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Abstract— The design of Systems on Chips (SoCs) is becoming more and more complex due to technological 

advancements. Missed bugs can cause drastic failures in safety-critical environments leading to the endangerment of 

lives. To overcome these drastic failures, formal property verification (FPV) has been applied in the industry. However, 

there exist multiple hardware designs where the results of FPV are not conclusive even for long runtimes of model-

checking tools. For this reason, the use of High-level Equivalence Checking (HLEC) tools has been proposed in the last 

few years. However, the procedure for how to use it inside an industrial toolchain has not been defined. For this reason, 

we proposed an automated methodology based on metamodeling techniques which consist of two main steps. First, an 

untimed algorithmic description written in C++ is verified in an early stage using generated assertions; the advantage 

of this step is that the assertions at the software level run in seconds and we can start our analysis with conclusive 

results about our algorithm before starting to write the RTL (Register Transfer Level) design. Second, this algorithmic 

description is verified against its sequential design using HLEC and the respective metamodel parameters. The results 

show that the presented methodology can find bugs early related to the algorithmic description and prepare the setup 

for the HLEC verification. This helps to reduce the verification efforts to set up the tool and write the properties 

manually which is always error-prone. The proposed framework can help teams working on datapaths to verify and 

make decisions in an early stage of the verification flow. 

Keywords— Formal Verification; Metamodeling; Equivalence Checking 

I.  INTRODUCTION  

Digital designs, especially those involving complex datapath operations like arithmetic functions, often begin 

with a prototype developed in a high-level language such as C, C++ or SystemC [1]. These prototypes serve as a 

starting point for exploring various implementations of algorithms during the early stages of design. Engineers use 

these prototypes to validate the specification as well as to explore the architecture before to implement the algorithm 

at the RTL, making refinements to optimize power, performance, and area. 

The former studies have highlighted the applicability of Formal Verification (FV) in critical applications such 

as automotive, but it may not scale well to larger designs due to the state explosion problem, especially in non-

friendly formal verification designs such as multipliers, FPU (Floating Point Units), filters and designs 

implementing complex algorithms [2]. Furthermore, FPV does not scale well for arithmetic units. Most of the 

approaches give up when the bit width increases. One alternative is High-Level Equivalence Checking (HLEC) 

which offers a technique to verify the functional equivalence between different design representations. It is more 

intuitive for verification engineers as HLEC focuses on comparing two different representations of the same design 

instead of proving properties. 

However, errors during the concept phase are usually not detected until the verification of the RTL design. 

Additionally, each stage of the design process can introduce bugs when a manual approach is used. Other 

approaches such as simulation cannot provide enough reliability for safety-critical designs. Furthermore, the 

verification time consumes more than 50% time of the total verification process [3]. For these reasons, this paper 

introduces a methodology called MetaHLEC which expands the use of FV for exhaustively verifying datapaths, 

like arithmetic functions, by reusing C/C++ reference implementations through HLEC. The methodology uses an 

automation framework to formalize specifications for use in safety-critical, requirement-driven development flows, 
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reducing manual efforts that could cause structural errors. Formalizing specifications using metamodeling 

techniques can minimize misinterpretation, enabling automation of parts of the design and verification flow, saving 

time and improving the quality of verification results and design. For example, 10 assertions related to the design 

of an FPU were proven at the software level within 4.9s and the HLEC yields full proof in 40.9s. This is a big 

advantage compared with the consumed time to model equivalent SVA properties that incorporate floating point 

multiplication as well as expected state space explosion, where no comparable model checking results could be 

obtained. Additionally, other efforts of constrained random simulation cannot prove the absence of bugs for all 

input combinations. 

The main contributions of this paper include: 

• We present MetaHLEC which is a new framework for the automation of HLEC and the metamodeling of data 

path designs for the generation of properties for the verification of untimed algorithmic descriptions written in C++, 

which is used in combination with commercial formal verification tools. 

• Analysis and verification of 6 types of datapath designs such as Unsigned Single-Instruction Multiple Data 

(SIMD) Multiplier, Floating Point Multiplier, Quadratic Fractional Polynomial, Pipelined Unsigned Division, 

Finite Impulse Response (FIR) Filter, and Error Correcting Codes. 

The rest of this paper is organized as follows. In Section II, we introduce the challenges of the designs under 

verification (DUVs) and the related work. The proposed methodology and metamodel are described in Section III. 

Section IV presents the verification results including a comparison with FPV. At last, we conclude this work in 

Section V. 

II. BACKGROUND 

A. Verification Challenges in Datapath Designs 

The verification of datapath designs presents significant challenges due to their inherent complexity and the intricate 

mathematical operations they involve. These operations include parallel data processing, precision requirements, 

pipelining, and error detection and correction. The process of verifying these circuits and algorithms must account 

for various input values, which can be challenging as the number of possible combinations related to the data width. 

It can quickly become unmanageable for formal verification. Taking in account the feasibility, scalability and the 

resource utilization, a design under verification can be seen as friendly or unfriendly to formal methods [2][4]. On 

the one hand, formal friendly datapath designs prioritize high concurrency and low sequential depth, along with 

control logic elements and low complexity data transformations. These designs often involve parallel data 

processing and are characterized by simplified bus protocols and straightforward data processing. On the other 

hand, non-friendly datapath involve designs implementing complex bus protocols, such as AXI (Advanced 

eXtensible Interface), OCP 2.1 (Open Core Protocol), PCI (Peripheral Component Interconnect); designs with 

complex arithmetic units and designs with a a large state space. In this work, we focused on the challenges related 

to following designs: 

• Unsigned Single-Instruction Multiple Data (SIMD) Multiplier: Complex data paths and control logic 

make time-consuming ensuring the correct behavior across multiple data elements and handle corner 

cases and boundary conditions. 

• Floating Point Multiplier: The IEEE 754 standard establishes precision requirements, rounding 

modes, and exception handling to ensure the correct implementation of floating-point multiplication, 

including handling of denormalized numbers such as NaNs and infinities[5]. It requires rigorous 

formal reasoning and verification which makes it complex writing properties for the verification. 

• Pipelined Unsigned Division: Verifying the correct operation of the pipelined division algorithm 

across multiple stages and ensuring precise handling of quotient and remainder calculation is a 

challenging task due to the complex pipelining, data hazards, and control logic associated with the 

division process. 
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• Quadratic Fractional Polynomial: Formal verification of quadratic fractional polynomials can be 

challenging due to the intricate mathematical operations involved, including multiplication, addition, 

and division of fractional coefficients. 

• Finite Impulse Response (FIR) Filter: Formal verification of FIR filters is challenging due to the 

intricate signal processing algorithms, including convolution, coefficient multiplication, and delay 

elements.  

• Error Correcting Codes (ECC): It is challenging due to the complex encoding and decoding 

algorithms, as well as the need to guarantee the correctness of error detection and correction. Its 

verification includes properties relates to parity generation, syndrome calculation, and error 

correction capability. 

B. Related Work 

Ludwig et al. is [6], [7] use a simulation-based approach for verifying SystemC models. However, formal 

verification of SystemC remains very challenging because of overhead by object-oriented structures and 

simulation-specific semantics [8], [9]. Additionally, the approach of property-driven design also does not ease the 

verification problem of datapaths. Thus, [11] motivates the usage of C/C++ over SystemC for designing algorithmic 

circuits. Another approach for utilizing software verification tools to verify RTL implementations is proposed as 

translating RTL into cycle-accurate C. Mukherjee et al. [12] translate Verilog designs into cycle-accurate ANSI-C 

programs using their tool V2C [13]. Their analysis shows significant verification speedups especially in datapath-

intensive designs. However, this approach cannot be used in an early stage of the design. Additionally, their tool 

V2C is limited to Verilog [14]. Qurat-ul-Ain et al. [15] made improvements to correct translation errors from V2C. 

They, however, use the verified C program to perform High-Level Synthesis (HLS) and obtain an optimized RTL 

design. However, the HLS design is verified with simulation. The approaches described in [14], [16][17][18] allow 

formal proofs between C/C++ references and RTL implementations. However, all of them rely on golden C/C++ 

reference models without providing means to verify their correctness according to specification. 

III. METHODOLOGY AND APPLICATION 

The proposed methodology in Figure 1 can be applied once a design specification is finalized.  In this work, the 

specification is associated into the metamodel of Section III.A . Usually, the design process starts with a design or 

concept engineer implementing a C or C++ function that represents the functionality or partial functionality of the 

design. As the C and C++ languages do not define any notion of time, the algorithm does not contain information 

about the latency or throughput of the implementation. However, it can be used efficiently to provide conclusive 

results about our algorithm taking in account that the properties in C can be verified on a few seconds as shown in 

Section IV. This first step is called Algorithm Verification and is a precondition to continue the second step called 

Implementation Verification.  Algorithm Verification takes the C/C++ algorithm reference and assertions generated 

from the verification plan to perform BMC — for example the open-source tool CBMC [9]. Successful model 

checking proves the correctness of the algorithm exhaustively, thereby qualifying the algorithmic implementation 

as a golden reference model. Afterwards, the algorithm is implemented in RTL using the scheduling and throughput 

constraints from the specification. In Implementation Verification, the C/C++ reference algorithm verified in the 

previous step and the RTL implementation are the main inputs to a commercial HLEC tool. It proves the 

equivalence of the DUV to the algorithm with respect to scheduling information from the specification. 
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Figure 1. Overview of the verification methodology 

A. Metamodel MetaHLEC 

As described in the previous section, the verification process is conducted in two verification cycles which will 

be referred to as Algorithm Verification and Implementation Verification. The needed information for these 

verification cycles is added into the metamodel of Figure 2. The root node MetaHLEC contains the name of the 

DUV as its only attribute. It can have one or multiple Requirement nodes, which represent functional requirements 

that the C/C++ algorithm has to fulfill, as well as a Mapping node that contains all information needed to connect 

the C/C++ algorithm to the RTL implementation. This Metamodel consists of two main nodes: 

• Requirement node: It contains the information for the verification of the algorithmic description and 

consists of a description, a name, and an ID for unique identification inside our internal specification 

management system. As part of the formalization of our algorithm, it is expressed as a cause-and-effect 

behavior, such that an action shall follow if a guarding expression occurs. For example, a guard can define 

action to take if a division by 0 occurs in the algorithm implementing the Pipelined Unsigned Division. 

Expressions can be seen as a structure consisting of literal, operators, and variable; for example, 

input_value != 0 ( input_value: literal, operator: !=, variable:0). An operator can be associated with other 

operators in case of more complex properties needs to be defined.  

• Mapping node: It contains the additional information for the HLEC and specifies the names of the 

implementation module (Imp_name) and algorithm function (Spec_name). It contains a Clock and Reset 

signal, which are only defined at RTL. Input and Output are the signals that have to be mapped. For a 

complete model, at least one input and one output need to be declared. In the inputs and output signals, 

it needs to be defined the name, the delay, the port size, and the sign interpretation for the port mapping. 

The mapping will be only active if the expression of the Condition is fulfilled. It is necessary for pipelined 

designs with variable delays, then the HLEC is verified only in the clock cycles that fulfill the condition. 

Additionally, our metamodel also considers a pipeline stalling condition, which can be achieved by 

output composition with Stalling. Furthermore, environmental conditions are implemented via 

Constraint, which similarly to guards and actions can be mapped to a management system via an ID, 

description, and name. Helper specifies the assertions to guide the RTL verification process. 
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Figure 2. Reduced diagram of the metamodel 

While the model can be represented as UML-diagram, its instantiation will be stored in structured XML. The 

instantiation of the model is guided by a Graphical User Interface (GUI). 

 

B. Automation MetaHLEC 

Based on the XML file associated to the introduced metamodel, the automation framework was developed. It 

minimizes the user interaction and structural errors. The algorithm specification will be formalized by transforming 

into guarding and action expressions that define the combinational behavior. The behavioral description is 

transformed into assertions in the target-language C to perform functional verification of the algorithmic design 

representation. Information about the design implementation consisting of clocks, resets and ports as well as 

operating and stalling conditions are used to generate the verification setup script. The fully automated translation 

from model to target code allows quick verification adaption to changes in functional and timing requirements 

while minimizing human error during environment setup. 

Figure 3 shows the overall generation process where the metamodel information and MAKO templates [23] 

are used to generate the verification elements such as a C harness containing the properties, the runscripts and the 

SV wrapper used to compare the C code and the RTL design. Figure 4  shows an example of the SVA properties 

used for FPV (Formal Property Verification) and its equivalent generated property for C verification considering 

a scalable division algorithm for unsigned integers, which adds one stage to the pipeline for every data bit. A 

pipeline for a 16-bit division for example, consists of 16 stages and delays calculation of the quotient by 17 clock 

cycles. Additionally, the design considers an undefined division by 0 via a flag. If an invalid operation occurs the 

quotient shall be set to all ones. 

 

 
Figure 3. The design specification is captured in a model instance based on the defined parameters of the metamodel 
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Figure 4. Comparison of properties for the verification of the Pipelined Unsigned Division. 

IV. RESULTS 

Table I shows the main results for three evaluated open-source designs. For the evaluation, the timeout was set 

up to 24h. Additionally, due to time-consuming modelling of equivalent SVA-properties that incorporate floating 

point multiplication as well as expected state space explosion, no comparable model checking results could be 

obtained. The results show that HLEC checking can verify designs which cannot be handle with a Formal Property 

Verification (FPV) approach. 

Table I. Verification time results for open-source designs 

Design Under  

Test 

Proposed Methodology Normal Approach 

CBMC EDA HLEC Tool Total EDA FPV Tool 

Unsigned Single-Instruction Multiple Data 
(SIMD) Multiplier (16 bits) [19] 

1.1 s 194.4 s 195.5 s 
 

Timeout a 

Floating Point Multiplication [20] 4.9 s 40.9 s 45.8 s Unknown 

Quadratic Fractional Polynomial (Fractional 

Width = 7) [21] 
0.03 s 138.3 s 138.33s 

 

Timeout 

a. 4-bit and 8-bit multiplication: 505.3 s.  

Afterwards, a scalable division algorithm for unsigned integers was verified. HLEC is proving the design for 

data widths up to 52 bit within the specified timeout of 24 h. While model checking obtained faster results for data 

widths lower than 8 bit as visible in Figure 5, the runtime obtained with HLEC rises at a much slower rate than with 

property checking indicating better scalability of the proposed methodology.  

 

Figure 5. Proof runtime for scalable data width of the division operators  

The results of the verification of a discrete filter FIR that is used in data processing [16] are shown in Figure 6. For 

the 8-bit implementation in the range of orders 1 to 31 HLEC showed an average runtime decrease by a factor of 

177. The 16-bit implementation could only be proven up to an order of 21 with the property checking setup without 

timeout after 24 h. 

SVA properties for division 

1 // Divisor is 0 

2 property div_by_0; 

3 ( (b_in == '0 ) |->  

4 ##(num_stages +1) divide_by_0_out && quotient_out == '1  

5 ); 

6 endproperty: div_by_0 

7    

8 // Divisor not 0 

9 property div_quotient_out; 

10 ( ( b_in != '0 ) |-> 

11 ##(num_stages +1) !divide_by_0_out && quotient_out ==  

12 ($past(a_in, (num_stages +1))  

13 / $past(b_in, (num_stages +1)))); 

14 endproperty: div_quotient_out 

 
 

Generated C assertions for division 

1 //Requirement 0: Division by zero 

2   if( ( b_i == 0 ) ){ 

3    __CPROVER_assert(( divide_by_0_o == 1 ), "Flag set"); 

4 

5    __CPROVER_assert(( ( ~ quotient_o ) == 0 ), "Division by zero"); 

6   } 

7    

8     

9   //Requirement 1: Divisor not 0 

10   if( ( b_i != 0 ) ){  

11   __CPROVER_assert(( divide_by_0_o == 0 ), "Flag clear"); 

12       

13   __CPROVER_assert(( quotient_o == ( a_i  / b_i ) ), "Quotient"); 

14  } 
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Figure 6. Comparison of HLEC and property checking runtimes for filter with (a) 8-bit and (b) 16-bit precision for data and coefficients 

Finally, the implementation of an industrial design of ECC (Error Correcting Codes) was evaluated. As depicted 

in Table II an ECC with 32-bit data-input with single-error correction and double-error detection was proven at a 

third of the runtime that the linearity approach described achieved with only 5.7 s. For the 64-bit data width with 

3/4 correction/detection, CBMC still performed acceptably at 1 second, but the EDA HLEC tool experienced a 

timeout, and the Formal Property Verification (FPV) tool took significantly longer at 16016.93 seconds. Other 

implementations with larger datawidths and larger error correction capabilities, however, were not verifiable with 

the developed methodology. The abstraction level chosen for this IP was too high in order to obtain conclusive 

results. 

Table II. Verification time results for open-source designs 

Datawidth Correction/Detection 
Runtime 

CBMC 

Runtime EDA 

HLEC Tool 

Runtime 

FPV 

32 1/2 0.97 s 5.7 s 17.2 s 

64 3/4 1 s Timeout 16016.93s 

 

All results shown in this section were obtained EDA tool vendors for C2RTL application for HLEC and FPV 

application for property checking, CBMC-5.73.0 [17] and Z3-4.12.0 [18]. 

V. CONCLUSION 

The automation framework generates a script that sets up the verification environment, maps the ports taking 

mapping conditions and delays into account, executes the proof, and samples coverage information. Thereby, the 

model-based approach allows for optimized input mapping minimizing the additional complexity delay operations 

add. The developed methodology was applied to several IPs. The runtime results show the methodology’s potential 

within data processing applications over FPV approaches. Its exhaustive proofs make it preferable over dynamic 

verification approaches as these can often never achieve full coverage of all states in the design. In combination 

with the automation framework that allows integration into requirement-driven flows, the methodology is especially 

suited for safety-critical applications. The verification time for Unsigned Single-Instruction Multiple Data (SIMD) 

Multiplier with 4 operation modes, a 32 bits floating point multiplication unit with 4 operations modes and 

Quadratic Fractional Polynomial were 195.5 s, 45.8s and 138.3s, respectively. Additionally, a scalable division 

algorithm for unsigned integers was verified. HLEC is capable to verify designs for data widths up to 52 bits within 

the specified timeout of 24 h. While model checking obtained faster results for data widths lower than 8 bits, the 

runtime obtained with HLEC shows a better scalability of the proposed methodology. With respect to the 

verification of a discrete filter FIR that is used in data processing, for the 8-bit implementation in the range of orders 

1 to 31 HLEC showed an average runtime decrease by a factor of 177. The 16-bit implementation could only be 

proven up to an order of 21 with the property checking setup without timeout after 24 h, while the proposed 

methodology could provide exhaustive proof up to order 31. Additionally, 32-bit implementation could be proven 

within 54s up to an order of 64 while FPV remained inconclusive for any order. 
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Finally, the implementation of an industrial design of ECC (Error Correcting Codes) was evaluated. However, 

ECCs implementations with larger data widths and larger error correction capabilities were not verifiable with the 

developed methodology. The reason is that the abstraction level chosen for this IP was too high in order to obtain 

conclusive results. 
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