
EasyChair Preprint
№ 14946

Search Result Verifiability in Multi-User Dynamic
Searchable Symmetric Encryption

Masaharu Son, Takeshi Nakai and Koutarou Suzuki

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 19, 2024



Search Result Verifiability in Multi-User Dynamic
Searchable Symmetric Encryption

Masaharu Son
Toyohashi University of Technology

Aichi, Japan
son.masaharu.gy@tut.jp

Takeshi Nakai
Toyohashi University of Technology

Aichi, Japan
nakai@cs.tut.ac.jp

Koutarou Suzuki
Toyohashi University of Technology

Aichi, Japan
suzuki@cs.tut.ac.jp

Abstract—Dynamic Searchable Symmetric Encryption (DSSE)
enables a single user to retrieve and update an encrypted
database stored on an external server without decryption. Multi-
User DSSE (MUDSSE) enables a data owner to give access rights
to multiple users, and the users perform keyword searches on the
encrypted database. This paper shows a concrete construction of
verifiable MUDSSE, which allows users to verify the correctness
of their search results, for the first time. Our construction is
achieved by extending the method proposed by Bost et al. (ePrint
2016) for converting a (single-user) DSSE into a verifiable one
to a method applicable to MUDSSE.

Index Terms—Data outsourcing, Multi-user dynamic search-
able symmetric encryption, Verifiability

I. INTRODUCTION

A. Backgrounds

Cloud services allow users to offload his/her database to an
external server that holds much larger storage. Encrypting a
database is a useful way to prevent information leaks when we
move it to an external server. However, traditional encryption
methods come with a trade-off: while they prevent the server
from viewing the database’s contents, they also hinder the
server’s ability to perform keyword searches. This trade-off
means that the solution sacrifices efficiency in favor of privacy.

Searchable Symmetric Encryption (SSE) is a cryptographic
protocol proposed to tackle the abovementioned problem [8],
[17]. An SSE scheme enables a user to perform keyword
searches on an encrypted database without decrypting it. One
of the key features of SSE is its ability to allow some leakages
of insignificant information, such as access and search patterns
[2], [4]. This feature is not a compromise, but a strategic
decision to achieve practical efficiency. SSE schemes can be
classified according to the functionalities they provide:

Dynamic or Static: A dynamic SSE scheme allows a user
to update the encrypted database after outsourcing it [2], [4],
[5], [12]. In contrast, a static SSE schemes that do not provide
such update functionality, and thus, once the user outsources
a database to the server, he/she cannot modify it.

Verifiable or Unverifiable: A verifible SSE scheme , which
considers the possibility of a server maliciously altering the
search results, enables a user to verify the validity of the results
[1], [13], [14], [20], [21]. In contrast, traditional (unverifiable)

This work was supported by JSPS KAKENHI Grant Number JP23K16880.

SSE schemes do not provide such functionality, and the user
cannot detect errors in search results.

Single-user or Multi-user: A single-user SSE involves a
single user and a server, which is the mainstream in researches
of SSE. This setting supposes that only one user has an
access right to the outsourced database. A multi-user SSE
scheme, in contrast, involves three types of parties: a data
owner, multiple users, and a server. A data owner outsources
encrypted database to an external server and gives access
rights of the database to users. Users retrieve the database
based on the given access rights. Note that since access
rights are different for each users, two users searching for the
same keywords may get different search results. Specifically,
a collusion-resistant multi-user SSE scheme guarantees that
users cannot learn more information about the database than
their access rights even if they collude [11], [15], [16], [18],
[19].

Recently, Chamani et al. [6] formalized a Multi-User Dy-
namic SSE (MUDSSE) scheme with collusion-resistance. (To
the best of our knowledge, their work is the only work to
address MUDSSE with collusion resistance.) In an MUDSSE
scheme, only the owner can update the database, and users
can only perform keyword searches. In addition to showing
an MUDSSE scheme, they claim that the proposed scheme
can be extended to a verifiable MUDSSE scheme by applying
a similar method based on a verifiable hash table proposed by
Bost et al. [3]. However, they showed no concrete construction.
Moreover, Bost et al.’s work shows a general transformation
method of a verifiable dynamic SSE scheme from a (non-
verifiable) dynamic SSE scheme, but it addresses only the
single-user setting. Thus, it is non-trivial whether it is possible
to convert an MUDSSE scheme to a verifiable one in a similar
way to their method.

We remark that a searchable encryption can be constructed
by using ORAM [10] or fully homomorphic encryption [9],
but such constructions are inefficient.

B. Our contribution

This paper presents a concrete construction of verifiable
MUDSSE for the first time. Our construction is achieved
by extending Bost et al.’s method [3] to MUDSSE. In the
extension, there are two main issues that need to be addressed.



The first issue is that, since access rights differ for each
user in the multi-user setting, correctness of search results also
differ for each user. Our construction resolves this issue by
the key idea that we make a verifiable hash table to each user.
Each table is made by using an private key shared between
the owner and only the corresponding user. Hence, even if the
server colludes with some users, it cannot learn anything about
the access rights of the other users, i.e, the scheme achieves
the collusion resistance.

The second problem arises from the fact that the party
updating the database, i.e., the owner, is different from the
parties retrieving it, i.e., users. The verifiable hash table stored
on the server needs to be updated as the DB is updated, and the
local state information used for the search has to be modified
after each update. Hence, as with the outsourced DB, updating
and retrieving the verifiable has table must be achieved by
coordinating between the owner and users. In our construction,
the owner takes the responsibility for updating the hash table,
while users retrieve it to perform the verification of the search
results. The owner achieves local state sharing by sending the
revised local state information to the user each time the table
is updated. This collaborative approach ensures the validity of
verification system, engaging both the owner and the users in
the process.

II. PRELIMINARIES

A. Notations

For a finite set X , we denote by x
$← X the process of

sampling an element x from X uniformly at random. |X |
means the number of elements of X . The empty set is denoted
by ∅.

For an interactive algorithm A run between parties P1 and
P2, (out1;out2) ← A(in1; in2) means that in1 (resp. in2) is
P1’s (resp. P2’s) input. Similarly, out1 (resp. out2) is P1’s
(resp. P2’s) output. We notate interactive algorithms involving
three or more parties in the same manner.

Denote by λ security parameter. We suppose that all parties
are probabilistic polynomial time (PPT) algorithms in λ. A
function v(·) is negligible in λ if for every positive polynomial
p(·), there exists an integer k such that for all integers n > k
it holds that v(λ) < 1/p(λ).

Let DB be a set of target file identifiers and let W be a
set of distinct keywords used in DB. Suppose that a database
DB consists of keyword and file pairs, and (w, id) ∈ DB
means that file id ∈ D contains keyword w ∈ W . Then, we
suppose that |DB| is polynomial in λ. We denote by DB(w)
the set of file identifiers containing w and by Kw(id) the set
of keywords in id. Let U be a set of users. For u ∈ U , we
denote by FileList(u) a set of file identifiers to which user u
has the access right, and define Access := {FileList(u)}u∈U .
Let UserList(id) denote a set of users who have access right
to id.

B. Pseudo-Random Function

Let GenPRF(1λ) be a key generating algorithm. We say that
F : {0, 1}λ×{0, 1}l → {0, 1}l′ is a familiy of pseudo-random

functions (PRF) if for any PPT algorithm Adv, it satisfies the
following property.

|Pr[S ← Gen(1λ);AdvF (S,·)(1λ) = 1]

− Pr[AdvR(·) = 1]| ≤ v(λ),

where v is a negligible function and R : {0, 1}l → {0, 1}l′ is
a random function.

C. Multi-set Hash Function

Multi-set hash function is a variant of hash function to deal
with sets as input [7].

Definition 1: Let H : SZ → Fq . We say a tuple of PPT
algorithms (H,+H,−H,≡H) is a collision resistant multi set
hash function if for any S ∈ S it satisfies the following
properties:

Comparability.
H(S) ≡H H(S)

Insertion incrementality.
∀x ∈ S\S,H(S ∪ {x}) ≡H H(S) +H H({x})

Deletion incrementality.
∀x ∈ S,H(S\{x}) ≡H H(S)−H H({x})

Collision resistance.
Any PPT algorithm is a computationality hard to find
two sets S1 and S2 such that S1 ̸= S2 andH(S1) ≡H
H(S2).

D. Verifiable Hash Table

In our proposed scheme, we use a hash table T such that
for a keyword w, T [w] = H(DB(w)).

A verifiable hash table is a tuple of algorithms
Θ =(VHTSetup, VHTUpdate, VHTRefresh, VHTGet,
VHTVerify):

• (KVHT,VHT, σVHT) ← VHTSetup(T ): It takes as input
hash table T and outputs a private key KVHT, verifiable
hash table VHT, and state σVHT.

• (VHT, π) ← VHTUpdate(T,VHT, γ): It takes as input
hash table T together with its verifiable hash table VHT,
and an update operation γ. Then, it outputs the new
verifiable hash table VHT and an update proof π. In this
paper, the form of γ is (hkey, v), which means the value
associated to hkey is overwritten with v.

• σVHT ← VHTRefresh(KVHT, σVHT, π, γ): It takes as
input a private key KVHT, state σVHT, a proof π, an update
operation γ. Then it outputs (refreshed) state σVHTu .

• (v, π)← VHTGet(T,VHT, hkey): It takes hash table T ,
verifiable hash table VHT, and hkey. It outputs the tuple
(v, π) where v is the value associated to hkey in T , and
a proof π.

• y ← VHTVerify(KVHT, σVHT, hkey, v, π): It returns y ∈
{ACCEPT,REJECT}.

VHTSetup is used to initiate a verifiable hash table.
VHTUpdate is used to update the verifiable hash table when
the underlying hash table is updated. VHTRefresh is used
to modify the local state after running an update operation.
VHTGet is used to retrieve the underlying hash table, and



obtain the corresponding proof, and then VHTVerify is used
to verify the retrieval result using the proof.

The verifiable hash table ensures the following two proper-
ties. (See [3] for the formal definitions of them.)

• Completeness: VHTGet returns to the value v associated
to the given hkey together with a valid proof.

• Soundness: Without state σVHT, it is hard for an adver-
sarial server to forge a valid proof, even if the server can
learn a polynomial number of valid proofs.

III. (VERIFIABLE) MULTI-USER DYNMANIC SSE

A. MUDSSE: Multi-User Dynamic SSE

We here give the definition of MUDSSE. An MUDSSE
scheme involves three types of parties: a data owner,
users, and a server. It consists of four algorithms
(Setup,Share,Update,Search) defined as follows.

• (K,σ,EDB) ← Setup(1λ, U,Access,DB) is a non-
interactive algorithm executed by an owner. Given a
security parameter λ, a user list U , an initial access list
Access, an initial database DB, it outputs a master key
K, an initial state σ, and an initial encrypted database
EDB. The master key K includes a secret key {Ku}u∈U

for each user.
• (R, σu;EDB) ← Search(Ku, σu, w;EDB) is an inter-

active algorithm between the user u and the server. Given
Ku, state σu, a keyword w from user u, and EDB from
the owner, it outputs the search result R and updated state
σu for the user, and updated EDB for the owner.

• (Access, σ;EDB) ← Share(K,u,Kw(id), id,Access, σ;
EDB) is an interactive algorithm between the owner and
the server. The owner inputs inputs master key K, user
u, list of keywords Kw(id), file identifier id, σ, Access,
and the server inputs EDB. The owner gets updated state
σ and Access, and the server gets updated EDB, as
output.

• (σ,Kw(id);EDB) ← Update(K, id,WList, op,Access,
σ;EDB) is an interactive algorithm between the owner
and the server. The owner inputs master key K, file
identifier id, list of keywords Kw(id), operation op ∈
{add, del}, Access, and σ, and the server inputs EDB.
The owner gets updated state σ and a list of Keywords
Kw(id), and the server get updated EDB, as output.

Setup is used to initiate an MUDSSE scheme. After running
the algorithm, the owner distributes users’ secret key for each
user, and outsources EDB to the server. Search is used to
perform keyword searches by users. Share is used to give an
access right to a specified user by the owner. Update is used
to add or delete keywords WList from a specified file.

B. Adaptive security

We here introduce the adaptive security of
MUDSSE parameterized by leakage functions
L := (LStp,LSrch,LUpd,LShr), where LStp corresponds to
the leakage function for the setup algorithm, and likewise for
the rest of them. Intuitively, each leakage function represents

the information that is allowed to be leaked to the server in
each operation, and we say an MUDSSE scheme is secure if
it ensures that the server learn no more information than the
allowed one.

The security definition follows the real/ideal simulation
paradigm. (See [6] the formal description.) We consider two
experiments: a real experiment (REALU,C,Π

A ) in which the
MUDSSE scheme is performed in the real world and an
ideal experiment (IDEALU,C,Π

A,S,L) that at most leaks information
specified by a leakage function L. In the real experiment, an
adversary A corrupting some users C ⊊ U interacts with
the algorithms of the scheme Π. In the ideal experiment,
A interacts with a simulator that is only given information
specified by L. Then, if there we can make up a simulator
such that an adversary A cannot distinguish between the
two experiments, then Π leaks no more information than the
leakage function L.

Definition 2 (L-adaptive security): An MUDSSE scheme Π
is L-adaptively-secure in the presence of corrupted particioants
C ⊂ U with respect to leakage function L, iff for any PPT
adversary A issuing a polynomial number of queries Q, there
exists a stateful PPT sumulator S and a negligible function v
such that |Pr[REALU,C,Π

A = 1] − Pr[IDEALU,C,Π
A,S,L) = 1]| ≤

v(λ).

C. Verifiable MUDSSE

Verifiable MUDSSE is a variant of MUDSSE that allows
users to verify the validity of their search results. We here
give the definition of verifiable MUDSSE.

• (K,σ,EDB) ← VSetup(1λ, U,Access,DB) is a non-
interactive algorithm executed by an owner. Given a
security parameter λ, a user list U , an initial access list
Access, an initial database DB, it outputs a master key
K, an initial state σ, and an initial encrypted database
EDB. The master key K includes a secret key {Ku}u∈U

for each user.
• (R ∪ {REJECT}, σu;EDB) ← VSearch(Ku, σu, w;

EDB) is an interactive algorithm run between user u
and the owner. Given Ku, state σu, search keyword w
from user u, and EDB from the owner, it outputs the
search result R or REJECT and updated state σu for the
user, and updated EDB for the owner. Note that REJECT
means that the user determines the search result is wrong.

• (σu;Access, σ;EDB) ← VShare(⊥;K,u,Kw(id), id,
Access, σ;EDB) is an interactive algorithm run by users
U , the owner, and the server. Users have not input, the
owner inputs master key K, user u, list of keywords
Kw(id), file identifier id, σ, Access, and the server inputs
EDB. The algorithm outputs a updated state σu for each
user u ∈ U , updated state σ and an updated access list
Access for the owner, and updated EDB for the server.

• (σu;σ,Kw(id);EDB) ← VUpdate(⊥;K, id,WList, op,
Access, σ;EDB) is an interactive algorithm run by users
U , the owner, and the server. Users have not input, the
owner inputs file identifier id, list of keywords Kw(id),
operation op ∈ {add, del}, Access, σ, and the server



inputs EDB. The algorithm outputs a updated state σu

for each user u ∈ U , updated state σ and Access for the
owner, and updated EDB for the server.

Definition 3 (Correctness): Let Ru,w := DB(w) ∩
FileList(u), which means the desired search result of keyword
w for user u. We say a verifiable MUDSSE scheme is correct
if for any user u and keyword w, VSearch fulfills the following
properties:

• If R = Ru,w, the algorithm outputs R as the search result,
except for negligible probability.

• Otherwise, the algorithm outputs REJECT, except for
negligible probability.

Remark: In our formalization of verifiable MUDSSE, VShare
and VUpdate involve users unlike the definition of (non-
verifiable) MUDSSE shown in Section III-A. We require this
change for technical reasons. Precisely, in our construction,
each time an owner updates the verifiable hash table, he/she
must share local state with users. Ideally, these communica-
tions between the owner and users should be removed. We
leave the task of removing them as future work.

IV. OUR CONSTRUCTION OF VERIFIABLE MUDSSE

This section presents our construction of VMUDSSE. Our
construction follows Bost et al.’s work that show a general
conversion method from (single-user) dynamic SSE into ver-
ifiable one.

A. Our Construction of Verifiable MUDSSE

Our scheme is shown in Algorithms 1–4, which is con-
structed based on a (non-verifiable) MUDSSE scheme Π.
Suppose that Π satisfies L-adaptively-secure for LΠ =
(LStp

Π ,LSrch
Π ,LUpd

Π ,LShr
Π ). Let F : {0, 1}λ × {0, 1}ℓ →

{0, 1}λ be a PRF, where ℓ := |W |.

VSetup. The algorithm is shown in Algorithm 1. The al-
gorithm is given security parameter λ, a user list |U |, an
initial access list Access, an initial DB as input. The al-
gorithm runs Π.Setup algorithm that generates the owner’s
secret key KΠ, each user’s secret key KΠu , and an encrypt
database EDB, where Π is an underlying (non-verifiable)
MUDSSE scheme. Afterwards, for all u ∈ U , the algorithm
makes up a hash table Tu such that its key is wtag :=
F (KT,u, w) and the corresponding value is a multi-set hash
value H({valu,w}w∈DB(w)∩FileList(u)). Then, it generates a ver-
ifiable hash table VHTu of Tu for all u. At the end of the algo-
rithm, the owner sends four keys (KVHTu ,KΠ,u,KT,u,KS,u)
for each user u, where KVHTu

is a private key of verifiable
hash table, KΠ,u is a private key used in Π, KT,u and KS,u

are private keys of pseudo-random function F . Also, the owner
sends (EDB, {Tu,VHTu}u∈U ) to the server.

VSearch. The algorithm is shown in Algorithm 2. At the
beginning, a user u obtains a search result R from the search
algorithm in Π. Then, the user verifies whether the search
result R is correct or not using verifiable hash table VHTu.
The user generates wtag := F (KT,u, w), which is the key

of VHT, and sends it to the server along with the user
identifier u. Note that the identifier allows the server to specify
the corresponding verifiable hash table. The server executes
VHTGet algorithm to get value h and proof π corresponding
to wtag from VHTu. Then, the server returns (h, π) to the
user u. The user u executes VHTVerify to verify if the
hash table includes (wtag, h). If it outputs ACCEPT, the
user compares h with H(F (Ke,u, R)). If the equation holds,
the user determines that R is correct. If VHTVerify returns
REJECT or the equation does not hold, the user determines
that R is wrong, and returns REJECT.

VUpdate. The VUpdate algorithm is presented in Algorithm
3. At the beginning, the owner updates the encrypted database
and the access list by the update algorithm in Π. Then, the
owner should modify the (verifiable) hash tables according to
the update. Note that {Tu}u∈UserList(id) are the verifiable hash
tables that should be reflected the updates. If the operation
of update is add, the algorithm adds H(Fe,u({id})) to the
values corresponding to key wtag := F (KT,u, w), w ∈ Wlist
on the hash table for each user u ∈ UserList(id). If the oper-
ation of update is del, the algorithm subtracts H(Fe,u({id}))
from the values corresponding to key wtag := F (KT,u, w)
for all w ∈ Wlist on the hash table for each user u ∈
UserList(id). Afterwards, the server activates VHTUpdate
algorithm to update verifiable hash table VHTu for all u ∈
UserList(id), to updated hash tables in verifiable hash tables
{VHTu}u∈UserList(id). Furthermore, the owner refreshes σVHTu

by activating VHTRefresh algorithm to reflect updated infor-
mation in σVHTu . After that, the owner sends σVHTu to users.

VShare. The VShare algorithm is presented in Algorithm 4.
At the beginning, the owner updates the encrypted database
by the share algorithm in Π. Then, the owner should modify
the verifiable hash tables according to the update. Then,
the only hash table that has to reflect the update is the
VHTu, where u is the object of the share algorithm. The
algorithm adds H(Fe,u({id})) to the values corresponding to
key wtag := F (KT,u, w) for all w ∈ Kw(id) on the hash table
of u. Afterwards, the server activates VHTUpdate algorithm
to update verifiable hash table VHTu, to reflect updated hash
table in the verifiable hash table. Furthermore, the owner
refreshes σVHTu

by activating VHTRefresh algorithm to reflect
the update information γ in σVHTu

. After that, the owner sends
σVHTu to the user.

B. Correctness

We here discuss correctness of our scheme. Our scheme
satisfies correctness described in Definition 3.

The key values of hash tables Tu are wtag, which is
uniquely determined by a keyword. For each wtag, the cor-
responding value is the multi-set hash of the desired search
result, i.e., h = H(F (Ke,u, R)). Also, in the search algorithm
(Algorithm 2), a user verifies the search result R′ by com-
puting h′ := H(F (Ke,u, R

′)), and comparing the value with
h := H(F (Ke,u, R)). (See line 14 of Algorithm 2.) From the
comparability, the insertion incrementatlity, and the deletion



incrementality of the multi-set hash, if R = R′, the equation
h = h′ holds the first item of Definition 3. Note that R refers
to the desired search result, and R′ is the search result obtained
by running the search algorithm (Σ.Search). Similarly, from
the collision resistance of the multi-set hash, if R ̸= R′, the
equation does not hold except for negligible probability. Thus,
our scheme fulfills the second item of Definition 3.

C. Security

Let query list L be the set of all operations of each
round, and its elements are described as (t,Search, u, w)
for a search, (t,Share, op, u, id,WList) for a share and
(t,Update, op, id,WList) for update, where op ∈ {add, del}
and t refers to the round number. We denote by qp(u,w) a
set of round numbers of queries in L that correspond to user
u and w.

Theorem 1: Our scheme fulfills L-adaptively-secure with the
following leakage functions L := (LStp,LSrch,LUpd,LShr):

• LStp(DB, U,Access) = (LStp
Π (DB, U,Access),

{|
⋃

id∈FileList(u) Kw(id)|}u∈U , U),
• LSrch(DB, u, w) = (LSrch

Π (DB, u, w), u, qp(u,w))
• LUpd(DB, op, id,WList) = (LUpd

Π (DB, op, id,WList),
op, {qp(u,w)}w∈WList},UserList(id), |WList|)

• LShr(DB, u, id,Access) = (LShr
Π (DB, u, id,Access),

u, {qp(u,w)}w∈Kw(id), |Kw(id)|),
where (LStp

Π ,LSrch
Π ,LUpd

Π ,LShr
Π ) are leakage functions of the

underlying MUDSSE scheme Π.
We defer the proof to the full version. Note that
|
⋃

id∈FileList(u) Kw(id)| refers to the number of rows in hash
table Tu. The above leakage functions imply that our scheme
allows the server to learn the query pattern. This is due to the
fact that wtag is determined uniquely from user identifier u
and keyword w.

V. CONCLUSION

We presented a concrete construction of verifiable MUDSSE
with collusion resistance for the first time. Our construction
was achieved by extending the method proposed by Bost et
al. [3] for transforming a (single-user) DSSE into a verifiable
one to a method applicable to MUDSSE.

As a future work, the update and share algorithms should
be modified to two-party protocols between the owner and the
server.

REFERENCES

[1] James Alderman, Christian Janson, Keith M. Martin, and Sarah Louise
Renwick. Extended functionality in verifiable searchable encryption. In
Cryptography and Information Security in the Balkans, pages 187–205.
Springer International Publishing, 2016.

[2] Raphael Bost. Σoφoς: Forward secure searchable encryption. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, page 1143–1154. Association for Computing
Machinery, 2016.

[3] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. Verifiable
dynamic symmetric searchable encryption: Optimality and forward
security. IACR Cryptol. ePrint Arch., 2016:62, 2016.

[4] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and
backward private searchable encryption from constrained cryptographic
primitives. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, page 1465–1482. Association
for Computing Machinery, 2017.

[5] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic search-
able encryption in very-large databases: Data structures and imple-
mentation. In 21st Annual Network and Distributed System Security
Symposium, NDSS, page 23–26, 2014.

[6] Javad Ghareh Chamani, Yun Wang, Dimitrios Papadopoulos, Mingyang
Zhang, and Rasool Jalili. Multi-user dynamic searchable symmetric en-
cryption with corrupted participants. IEEE Transactions on Dependable
and Secure Computing, 20(1):114–130, 2023.

[7] Dwaine Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend,
and G. Edward Suh. Incremental multiset hash functions and their
application to memory integrity checking. In Advances in Cryptology -
ASIACRYPT 2003, pages 188–207, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[8] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable symmetric encryption: Improved definitions and efficient
constructions. In Proceedings of the 13th ACM Conference on Computer
and Communications Security, page 79–88. Association for Computing
Machinery, 2006.

[9] Craig Gentry. Computing arbitrary functions of encrypted data. Com-
mun. ACM, 53(3):97–105, mar 2010.

[10] Oded Goldreich and Rafail Ostrovsky. Software protection and simula-
tion on oblivious rams. J. ACM, 43(3):431–473, may 1996.

[11] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Risten-
part, and Vitaly Shmatikov. Breaking web applications built on top of
encrypted data. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, page 1353–1364. Association
for Computing Machinery, 2016.

[12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic
searchable symmetric encryption. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, page 965–976.
Association for Computing Machinery, 2012.

[13] Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric
encryption. In Angelos D. Keromytis, editor, Financial Cryptography
and Data Security, pages 285–298, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[14] Kaoru Kurosawa and Yasuhiro Ohtaki. How to update documents
verifiably in searchable symmetric encryption. In Cryptology and
Network Security, pages 309–328. Springer International Publishing,
2013.

[15] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Symmetric searchable
encryption with sharing and unsharing. In Computer Security, pages
207–227, Cham, 2018. Springer International Publishing.

[16] Raluca Ada Popa, Emily Stark, Steven Valdez, Jonas Helfer, Nickolai
Zeldovich, and Hari Balakrishnan. Building web applications on top of
encrypted data using mylar. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pages 157–172, Seattle,
WA, 2014. USENIX Association.

[17] Dawn Xiaoding Song, D. Wagner, and A. Perrig. Practical techniques
for searches on encrypted data. In Proceeding 2000 IEEE Symposium
on Security and Privacy. S&P 2000, pages 44–55, 2000.

[18] Cédric Van Rompay, Refik Molva, and Melek Önen. Secure and scalable
multi-user searchable encryption. In Proceedings of the 6th International
Workshop on Security in Cloud Computing, SCC ’18, page 15–25.
Association for Computing Machinery, 2018.

[19] Yun Wang and Dimitrios Papadopoulos. Multi-user collusion-resistant
searchable encryption with optimal search time. In Proceedings of the
2021 ACM Asia Conference on Computer and Communications Security,
page 252–264. Association for Computing Machinery, 2021.

[20] Dandan Yuan, Shujie Cui, and Giovanni Russello. We can make
mistakes: fault-tolerant forward private verifiable dynamic searchable
symmetric encryption. In Proceedings - 7th IEEE European Symposium
on Security and Privacy, EUROS&P 2022, pages 587–605. IEEE,
Institute of Electrical and Electronics Engineers, 2022.

[21] Jie Zhu, Qi Li, Cong Wang, Xingliang Yuan, Qian Wang, and Kui Ren.
Enabling generic, verifiable, and secure data search in cloud services.
IEEE Transactions on Parallel and Distributed Systems, 29(8):1721–
1735, 2018.



Algorithm 1 Our Construction (Setup)
VSetup(1λ, U,Access,DB)

1: Owner:
2: (KΠ, {KΠ,u}u∈U ,EDB)← Π.Setup(1λ, U,Access,DB)
3: For all u ∈ U , initialize Tu to an empty hash table. For

all u ∈ U and w ∈W , valu,w := ∅
4: for all u ∈ U do
5: KT,u,KS,u

$← {0, 1}λ
6: for all w ∈W do
7: wtag← F (KT,u, w)
8: Ke,u ← F (KS,u, w)
9: for all id ∈ DB(w) do

10: If id ∈ FileList(u), valu,w = valu,w ∪
{F (Ke,u, id)}

11: end for
12: If valu,w ̸= ∅, Tu[wtag]← H(valu,w)
13: end for
14: end for
15: (KVHTu

,VHTu, σVHTu
)← VHTSetup(Tu)

16: Set Ku = (KVHTu ,KΠ,u,KT,u,KS,u) for all u ∈ U
17: Set K = (KΠ, {Ku}u∈U )
18: Send (EDB, {Tu,VHTu}u∈U ) to the server
19: Send (Ku, σVHTu

) to user u for all u ∈ U

Algorithm 2 Our Construction (Search)
VSearch(Ku, σu, w;EDB)

1: (R, σu;EDB)← Π.Search(KΠ,u, σu, w;EDB)
2:
3: User u:
4: wtag← F (KT,u, w)
5: Ke,u ← F (KS,u, w)
6: Send (wtag, u) to the server
7:
8: Server:
9: (h, π)← VHTGet(Tu,VHTu,wtag)

10: Send (h, π) to the user u
11:
12: User u:
13: if ACCEPT← VHTVerify(KVHTu

, σVHTu
,wtag, h, π)

14: if h ≡H H(F (Ke,u, R))
15: return R
16: else
17: return REJECT

Algorithm 3 Our Construction (Update)
VUpdate(K, id,WList, op,Access, σ;EDB)

1: (σ,Kw(id);EDB)← Π.Update(KΠ, id,WList, op,Access, σ;
EDB)

2: for all u ∈ UserList(id) do
3: for all w ∈WList do
4: Owner:
5: wtag← F (KT,u, w)
6: Ke,u ← F (KS,u, w)
7: h′ ← H(FKe,u

({id}))
8: Send (wtag, h′, op, u) to the server
9:

10: Server:
11: h← Tu[wtag]
12: if op = add
13: h′′ ← h+H h′

14: if op = del
15: h′′ ← h−H h′

16: Let γ = (wtag, h′′), which means the overwriting
of Tu[wtag] by h′′

17: (VHTu, π)← VHTUpdate(Tu,VHTu, γ)
18: Send (π, h, h′′, γ) to the owner
19:
20: Owner:
21: σVHTu

← VHTRefresh(Kσ, σVHTu
, π, γ)

22: Send σVHTu
to the user

23: end for
24: end for

Algorithm 4 Our Construction (Share)
VShare(K,u,Kw(id),Access, σu;EDB)

1: (Access, σu;EDB)
2: ← Π.Share(KΠ, u,Kw(id), id,Access, σu;EDB)
3: for all w ∈ Kw(id) do
4: Owner:
5: wtag← F (KT,u, w)
6: Ke,u ← F (KS,u, w)
7: h′ ← H(FKe,u

({id}))
8: Send (wtag, h′) to the server
9:

10: Server:
11: h← Tu[wtag]
12: h′′ ← h+H h′

13: Let γ = (wtag, h′′), which means the overwriting of
Tu[wtag] by h′′

14: (VHTu, π)← VHTUpdate(Tu,VHTu, γ)
15: Send (π, h, h′′, γ) to the owner
16:
17: Owner:
18: σVHTu

← VHTRefresh(σVHTu
, γ)

19: Send σVHTu to the user.
20: end for


