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Abstract: 

Identification of the geological features with the help of maps plays a crucial role in mineral 

exploration. The traditional way of geological data collection in remote areas is time-

consuming and also challenging, thus the images extracted from the Remote Sensing technique 

are followed by image processing, which assists in classifying and improving geological 

mapping more accurately. Remote Sensing technology can now map different litho-units and 

associated structural features with greater precision and speed. In this paper, a comparative 

review is done based on remote sensing and image processing using different machine-learning 

methods. Images obtained from many satellites popularly used by geologists for geosciences 

have been explored and compared. Secondly, different machine-learning methods for 

processing these images are analyzed and their accuracy is compared. The comparative result 

concludes that the satellites that are first and foremost for such studies are of multispectral 

types (e.g. ASTER, Sentinel-2 and Landsat) due to the historical coverage. The survey 

concludes that when Landsat-8 images are used with the SVM give output accuracy of more 

than 80%. At the same time, the Random Forest is a technique, that uncovers the potential of 

remote sensing to address the emerging problems in Geographic Information Science. With 

only a sizable number of experiments performed through deep learning, provides results with 

more than 90% accuracy highlighting the supremacy of deep learning in geographical and 

remote sensing applications. 
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Introduction: 

The major constituents of the Earth's surface are water bodies such as oceans, rivers and lakes, 

only a small 29% of the Earth's surface is occupied by land in the form of mountains, hills, 

plains and islands. This small area includes a series of diverse elements such as forests, deserts, 

vegetation, urban areas, outcrops of different types of rocks and so on. Thus, the mapping of 

these rocks is a challenging task to conduct (Mani et al., 2021). 

These maps contain structure details, lithological units, alteration types and many more features 

related to mineral identification. Traditionally, the expert did this work by extracting the 

information, collecting the data and exploring the area over time. The conventional geological 

mapping method now switches to the Remote sensing technique, to gather information about 

the Earth's surface. The data acquisition from the Remote Sensing technique is spectral, 

temporal and spatial; which helps the geologist to provide proper identification of minerals 

without accessing the remote area. It even helps in geological survey mapping, analysis and 
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interpretation of the work (Wang et al., 2024). Further, it provides unique information related 

to the extraction of different geological features exposed on the earth's surface. 

In remote sensing each pixel of the image corresponds to the spectral vector of reflectance 

value with a specific wavelength which is further compared with the spectral characteristics of 

the mineral object, this helps to detect the type of mineral with the same characteristics. In 

remote sensing sometimes it becomes difficult to capture the image of a mineral due to 

environmental disturbance. In such cases spectral absorption property of a mineral overlaps 

and even the light scattering effect leads to different spectral signatures. These limitations can 

be easily overcome with the help of Machine learning algorithms. It also helps in mineral 

exploration of even high-dimensional Data images. Unsupervised, supervised and semi-

supervised are different types of machine learning algorithms that help in the proper 

exploration of the minerals from the image captured by the Remote Sensing technique. 

Integrating the remote sensing technique supervised by machine learning methods together 

generates low-cost and accurate solutions for lithological mapping. Geological maps provide 

detailed information regarding Earth's surface. The lithological map furnishes the 

characteristics of different types of rocks, their distribution and their properties (Omairi and 

Garouani, 2023)   

1. Remote Sensing 

It is a technique to acquire data about any object without being physically in contact with that 

object. It is mainly applied to detect and monitor the characteristics of any area by measuring 

its emitted or reflected radiation from a distance with the help of satellites or aircraft. (Blaschke 

et al., 2011, Mani et al., 2021).  The electromagnetic spectrum technique used in remote 

sensing records the energy that Earth's surface reflects or emits. The properties of the object 

decide the reflected radiation from an object (Awange et al., 2013).  

Remote sensing technology has enhanced the lithological mapping technique. It provides 

insight into details of even those areas that are unreachable or uncovered by the geologist using 

traditional methods.  Lithological mapping uses various remote sensing techniques, for 

example, radar imaging (Radford et al., 2018), hyperspectral imaging (Peyghambari and 

Zhang, 2021) and multispectral imaging (Ghrefat et al., 2021). Multi-spectral imaging (MSI) 

differs from hyperspectral imaging (HIS) in just their band representation. MSI contains 3 to 

10 bands while HIS has 100 to 1000 bands (Doneus et al., 2014). The mineral's spectral 

properties support the identification of different rocks or minerals by remote sensing technique 

(Ourhzif et al., 2019). 

The multispectral imaging (MSI) technique has limits due to its low spectral resolution (Nicolis 

et al., 2021), making it quite hard to distinguish between surface objects with small variations. 

Nevertheless, these drawbacks can be removed through the use of machine learning techniques, 

which can stand for patterns as well as characteristics, thus increasing the speed and accuracy 

of multispectral images (Prost, 2014). The target of the study is to analyze the different types 

of satellites that are useful in mineral exploration and lithological mapping.  

1.1 Satellite data 

There are two types of Remote sensing processes classified according to the source of signal 

used to identify any object. Active Remote Sensing instruments explore the object by emitting 

their light while the passive Remote Sensing instruments depend on the sunlight emitted or 

reflected by the object. Each mineral has a unique reflectance value with the help of which it 



is been identified. For geological mapping, optical as well as radar data are used. Optical and 

data vary in terms of the range of wavelength used. Lee et al., (2020) in his paper reported that 

optical sensor works over the short range of the electromagnetic spectrum while Zhou and 

Guan, (2011) noticed that radio Remote Sensing Systems operate in the interval of 1 mm to 

1m.  

1.1.1 Optical data 

ASTER deals with 14 spectral bands, which are imposed on the EOS Tera platform. The first 

three-band VNIR explores objects with a resolution of 15m while the next six-band SWIR has 

a resolution of 30m. The last five bands keep a record of thermal infrared radiation with a 

resolution of 90m. (Rowan and Mars 2003) 

Table 2: ASTER Satellite Description 

ASTER 

Swath Width= 60 km 

Year of Launch= 1999 

Subsystem VNIR SWIR TIR 

Band number Spectral Range 

Band 1 0.520–0.600   

Band 2 0.630–0.690   

Band 3 0.780–0.860   

Band 4  1.600–1.700  

Band 5  2.145–2.185  

Band 6  2.185–2.225  

Band 7  2.235–2.285  

Band 8  2.295–2.365  

Band 9  2.360–2.430  

Band 10   8.125–8.475 

Band 11   8.475–8.825 

Band 12   8.925–9.275 

Band 13   10.250–10.950 

Band 14   10.950–11.650 

Ground resolution (m) 15 30 90 

 

Landsat 5, 7, 8 and 9 are satellites that work as optical data providers and are useful in the 

geological mapping process. For over four decades, they have been constantly tracking the 

Earth's surface to meet the needs of diverse information and data requests, to map various 

physical features of the Earth. (Wulder et al., 2008).   

Landsat 5 was first active in 1984; it was equipped with both multispectral scanners and 

thematic mapper sensors. The Thermal Mapper band which is the thermal band collects the 

data over the visible Near Infrared (VNIR), shortwave infrared (SWIR) and thermal domains, 

it is also spatially resolved at 120 meters for the thermal band and at 30 meters for the rest of 

the bands (Banskota and Kumar, 2014). 

On April 15, 1999, Landsat 7 was launched with an ETM + sensor. The major output that came 

out of the satellite was its work in visual and near-infrared bands, that is 8 spectral bands were 

used to collect the data which have a different special resolution. Out of 8 bands, the first four 

were of resolution of 30m, six bands were of thermal infrared with 60m resolution while the 



last two Bands having 15 M Resolution were panchromatic bands (Rajan et al., 2019).  

Landsat 8 became functional on 11th February 2013 with a Thermal infrared sensor (TIRS) 

and OLI sensor. Landsat-8 contains 11 Spectral bands where the resolution of the image was 

the same as the ETM+ sensor that is, it contains VNIR and SWIR bands from range 1-7 while 

band 8 was a Panchromatic band. The special band 9 was mainly used to detect Cyrus cloud 

with a 30m resolution while the last two bands are thermal bands with a 100m resolution (Zang 

et al., 2016). The Landsat -9 is the latest satellite launched on September 27, 2021. It contains 

special features discriminating between natural changes and human changes, thus providing 

vital support in decision-making (Huanget et al., 2003).  

Table 1: Landsat Satellites Description 

LANDSAT 5 

Swath Width= 185 km 

Year of Launch= 1984 

Subsystem TM MSS 

Band number Spectral Range 

Band 1 Blue 0.45–0.52  

Band 2 Red 0.52–0.60  

Band 3 Green 0.63–0.69  

Band 4 NIR 0.76–0.90   

Band 5 SWIR 1 1.55–1.75  

Band 6 Thermal 10.40–12.50  

Band 7 SWIR 2 2.08–2.35  

Band 4 Green  0.50–0.60 

Band 5 Red  0.60–0.70 

Band 6 NIR 1  0.70–0.80 

Band 7 NIR 2  0.80–1.10 

Band 4 Green  0.50–0.60 

Ground resolution (m) 30 57×79 

 

LANDSAT 8 

Swath Width= 185 km 

Year of Launch= 2013 

Subsystem OLI TIRS 

Band number Spectral Range 

Band 1 Coastal Aerosol 0.43–0.45  

Band 2 Blue 0.45–0.51  

Band 3 Green 0.53–0.59  

Band 4 Red 0.64–0.67   

Band 5 NIR 0.85–0.88  

Band 6 SWIR 1 1.57–1.65  

Band 7 SWIR 2 2.11–2.29  

Band 8 Panchromatic 0.50–0.68  

Band 9 Cirrus 1.36–1.38  

Band 10 TIRS 1  10.60–11.19 

Band 11 TIRS 2  11.50–12.51 

Ground resolution (m) 30 100 

 



LANDSAT 9 

Swath Width= 185 km 

Year of Launch= 2021 

Subsystem OLI-2 TIRS-2 

Band number Spectral Range 

Band 1 Coastal Aerosol 0.43–0.45  

Band 2 Blue 0.45–0.51  

Band 3 Green 0.53–0.59  

Band 4 Red 0.64–0.67   

Band 5 NIR 0.85–0.88  

Band 6 SWIR 1 1.57–1.65  

Band 7 SWIR 2 2.11–2.29  

Band 8 Panchromatic 0.50–0.68  

Band 9 Cirrus 1.36–1.38  

Band 10 TIRS 1  10.60–11.19 

Band 11 TIRS 2  11.50–12.51 

Ground resolution (m) 30 100 

**Source: https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors 

Sentinel-2 watches over Earth from a polar orbit. It snaps high-resolution, multi-colored 

pictures of the ground. Sentinel-2A took flight on June 23, 2015. Its buddy Sentinel-2B, joined 

the party on March 7, 2017. These space cameras help spot minerals on our planet's skin. VNIR 

and SWIR combined to form 13 bands. Four bands have a sharp 10 m view, the next six bands 

have a resolution of 20 m and the last three peek at 60 m (Drusch et al., 2012). 

Table 3: Sentinel Satellite Description 

SENTINEL 

Swath Width= 60 km 

Year of Launch= 1999 

Subsystem VNIR SWIR TIR 

Band number Spectral Range 

Band 1 0.520–0.600   

Band 2 0.630–0.690   

Band 3 0.780–0.860   

Band 4  1.600–1.700  

Band 5  2.145–2.185  

Band 6  2.185–2.225  

Band 7  2.235–2.285  

Band 8  2.295–2.365  

Band 9  2.360–2.430  

Band 10   8.125–8.475 

Band 11   8.475–8.825 

Band 12   8.925–9.275 

Band 13   10.250–10.950 

Band 14   10.950–11.650 

Ground resolution (m) 15 30 90 

 

Digital Globe sells space pictures and map data. They also run civilian spy satellites like 

IKONOS, Quick Bird, GeoEye-1 and World View. Ball Aerospace and Technologies team was 

known to design these satellites. WorldView-1 was launched in 2007. It snaps black-and-white 



photos at 50 cm sharp. This camera has no color, but it takes detailed pics fast. It works great 

for making 3D maps (Good et al. 2018). WorldView-2 came next in 2009. It shoots 46 cm 

black-and-white images and 1.85m color images. It has color bands from 0.4 to 1.04 µm (Kruse 

and Perry, 2013). WorldView-3 blasted off in August 2014. It stands alone as the only 

commercial satellite with 16 bands of high-resolution Earth images. WorldView-3 sees eight 

bands at 3.7 m sharp from 1.2-2.33 µm. It also grabs eight bands at 1.2 m sharp from 0.42-1.04 

µm. (Kruse et al., 2015). 

 2.1.2. Airborne data 

In the case of Airborne Data, Specific Sensors are used, supported by drones or planes for data 

acquisition. Since 1997, the Geoscan Airborne Multispectral Scanner (AMSS) designed two 

sensors (MK I and MK II) that provide multispectral and hyperspectral airborne data. Lyon and 

Honey described the Geoscan AMSS Mk II scanner for the first time in 1990 and this tool was 

used for mineral exploration (Agar, 1994). 

The first full spectral range imaging radiometer was AVIRIS (Advanced visual infrared 

imaging spectrometer). It was designed to scan objects with a spectral resolution of 10nm with 

the technique called whisk–broom scanning using 224 bands(Hamlin et al., 2011). The features 

of AVIRIS were improved and modified to design a new generation scanner called AVIRIS-

NG, with an excellent signal-to-noise ratio. AVIRIS-NG is an HSI spectrometer with 380 nm 

to 2510 nm wavelength and 5 nm sampling (Tripathi and Gohil, 2019). 

In 1999, Australia built and managed the hyperspectral mapper (HyMap). The sensor has 2 to 

10 m of spatial resolution, covering wavelengths ranging from 0.45 to 2.48 µm with the help 

of 126 spectral bands (Ishidoshiro et al., 2016). 

Hyperion Sensor initiated the Hyperspectral remote sensing technique. NASA's EO-1 

Millennium Mission started in November 2000 when they launched Hyperion. It is one of the 

space-borne hyperspectral sensors with a 30m spatial resolution, 10nm spectral resolution of 

10 nm, supported by 242 spectral bands (Pearlman et al., 2003).   

Table 4: Airborne Satellite 

Satellite/Sensor AVIRIS AVIRIS-NG Hy Map Hyperion 

Year of Launch 1987 2012 1999 2000 

Total Spectral 

Bands 

224 spectral 

bands 

427 spectral 

bands 

126 spectral 

bands 

242 spectral 

bands 

Ground 

Resolution (m) 

∼20 ∼5 ∼5 30 

Spectral Range 

(µm) 

0.36–2.50 0.38–2.51 0.45–2.50 0.357–2.576 

Swath Width 

(km) 

∼10.5 4–6 - 7.7×42 

 

The extraction of datasets done with the help of different satellites or sensors was analyzed 

from the research papers and is visualized (Figure-1), where it is clear that the maximum 

multispectral satellites were used for mineral exploration with the help of remote sensing 

technology. It appears from Figure 1 that most of the study Landsat series satellites are used 

followed by ASTER and Sentinel-2. 

The satellites used for the extraction of images as referred to in above mentioned papers are 



noted in Figure 1. It illustrates that most of the study used Landsat series satellites followed by 

ASTER and Sentinel-2. While the least used satellite is TOPSAR. Further, it appears that 

Landsat, being a widely used satellite because of its long historical archive from 1972 as well 

as its global coverage and consistency make it famous among geologists in mineral exploration. 

 

 

Figure 1: Bar diagram illustrating the use of satellites in mineral exploration from 2003 to 2024. 

2. Machine Learning: 

The important step in mineral exploration is accurately mapping different geological features 

to generate the lithological map. Machine learning plays an important role in developing 

different types of classified maps with the support of Remote Sensing data. It maps different 

lithological units, alteration units, structures and many more leading to an easy and inexpensive 

approach. Sun and Scanlon (2019) stated that Remote sensing techniques, combined with 

Machine learning methods, can be used to explore big data with high resolution.  

ML methods are subdivided mainly into two parts- The First is Supervised Learning and 

another is Unsupervised Learning. ML Method which contains Supervised Learning, is 

implemented with labeled data to help in the prediction or classification of problems, which 

model input features and desired output (Kotsiantis, 2007). These input features generated 

through remote sensing techniques might be noisy or uncertain which is further improved using 

different ML techniques, thus making the model robust in nature concerning spectral analysis 

and ground truth measurement (Gewali et al., 2018). 

In unsupervised Learning, target labels are not required to recognize the patterns. It supports 

data reduction techniques like PCA, ICA, MNF and clustering techniques like K-Means and 

ISO data. In the case of Image processing, clustering techniques are preferred (Xie et al., 2020).  

The Big data analysis follows the Dimension Reduction Method to make the data robust by 

removing noise and outliers, decreasing the complexity of a problem; as in smaller and proper 

datasets the accuracy to find the optimal solution increases (Caggiano et al., 2018). ML makes 

strategic decisions based on data analysis and interpretation by processing high-dimensional 

data into low-dimensional data by predicting some trends or characteristics of data (Cracknell 

and Reading, 2014). Omairi and Garouani, (2023) stated that the integrated approach of 
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Remote Sensing with Machine Learning methods can enhance our knowledge related to 

insights features of geology. 

2.1 Dimensionality Reduction Technique: 

It aims to reduce the number of input features while retaining its maximum originality by 

compressing factors after analyzing its factors properly. PCA, ICA and MNF are the different 

techniques of reduction that transform input variables that are correlated to each other into 

independent components (Nielson, 2011, Shirmard et al., 2020). For Gold exploration, 

Sheikhrahimi et al., (2019), Traore et al., (2020) and Abdolmaleki et al., (2020) used PCA and 

MNF methods along with the images captured from satellites like ASTER, landsat8 and 

sentinel-2 respectively to recognize and map the area with maximum gold extract components. 

For image transformation, PCA was used to provide fast and cost-efficient means to delineate 

lithological and alteration units. 

EI Atillah et al., (2019) used PCA and generated false-color composite (FCC) images for map 

lineament obtained from ASTER in the area of Morocco. This study resulted in 74% satisfying 

performance. Even different dimensionality reduction techniques were compared by Shirmard 

et al., (2020) and efficiently mapped different alteration types in geology. In the research 

papers, written by Zhang et al., (2020) and Wang et al., (2020), cracks and faults were 

identified respectively using the PCA concept.  

Even some researchers used Aster and Landsat 8 OLI sensor data in lithological mapping. 

Wang et al., (2024) used an algorithm named as light gradient boosting machine (lightGBM) 

for geological mapping along with PCA and Random Forest. In this study, geochemical sample 

points were trained and a new model was designed which used the Softmax function. The 

function was iterated five times to identify the lithological unit. A new and accurate mapping 

technique was conducted in the Duolong mineral district, Tibet, China. 

Table 5: Satellite and Dimensionality Reduction Techniques used in research paper 

                               Dimensionality Reduction Techniques 

 

  Research Paper    Satellite / Sensor  Method 

Ghoneim et al., (2024) Landsat 8/9 

 

Principal Component                    

Analysis 
 

Wang et al., (2024) ASTER, Landsat 8 OLI 

Zhang et al., (2020) UAV 

Wang et al., (2020) UAV 

Traore et al., (2020) Landsat 8 

Shirmard et al., (2020) ASTER 

Abdolmaleki et al., (2020) Sentinel-2 

Sekandari et al., (2020) ASTER, Sentinel-2, Landsat 8 

Sheikhrahimi et al., (2019)   ASTER 

El Atillah et al., (2019) ASTER 

Ghoneim et al., (2024) Landsat 8/9 

Minimum Noise Fraction Lorenz et al., (2021) UAV 

Traore et al., (2020) Landsat 8 

 

2.2 Support Vector Machine (SVM): 

It is a type of classification method. Wang and Zhang (2010) used SVM Classifier to extract 



the rock and mineral composition by mapping Hyperion images in the northwest region of 

China. Lithological and mineralogical knowledge procured from the Hyperion satellite is rather 

similar to the conventional geological map derived for gold extraction. (Shirmard et al., 2021). 

SVM also supports the design mineral prosperity map that justifies enough mineral extract in 

a particular area (Abdokmaleki et al., 2020). Lorenz et al. (2021) mentioned the use of drone 

technology along with SVM for mapping different mineralization zones.  

SVM is used to identify the best hyperplane separating the input support vectors or training 

samples from different classes. It can be done by adjusting kernel functions like the Sigmoid 

function, polynomial function, or linear function and penalty parameters (Huang et al., 2002). 

SVM provides accurate results even when the sample size is small and has high dimensionality 

(Srivastava et al., 2012). SVM has revolutionized the concept known as spectral-based 

lithological Mapping. Various applications use SVM prominently (Othman and 

Gloaguen,2014). Yu et al., 2012 have reported an automated lithological categorization in their 

work in the northern part of India. While Bressan et al., (2020) compared SVM with Random 

neural network method to categorize geological features near offshores. Bachri et al., (2020) 

combined the spectral characteristics of Landsat8, DEM and Geomorphometric properties with 

the SVM technique to evaluate the effective lithological mapping.  

Rezaei et al., (2020) identified different rock types with the support vector machine technique 

in mapping lithological units. In their study, 80% accuracy was calculated for using SVM. 

Band Ratio Spectral angle mapper (SAM) to classify primary rocks. In some papers, the object-

based classification technique was compared with SVM. It was observed that object-based 

classification is more accurate than SVM, while using hyperspectral images. SVM scored a 

76.30% accuracy rate and 0.719 kappa coefficient while the accuracy and kappa coefficient of 

Object-based classification were 81.30% and 0.779 (Petropoulos et al., 2012). Similarly, 

Ge et al., (2018) also used Sentinel -2 data, on which SVM and object-based classification 

method was applied in Mongolia regions. In this region, the lithological map was created to 

detect different sedimentary rocks and ultramafic rocks by using spatial and spectral features, 

an accuracy of 90.83% (kappa coefficient of 0.885) was achieved with object-based 

classification. Ourhzif et al., (2019) analyzed lithological groups using ASTER and Landsat 8 

OLI data and calculated that the Landsat 8 OLI satellite gave 22.4% more accuracy than 

ASTER Data. The accuracy of ASTER data was 74.88% (kappa coefficient = 0.71) while the 

accuracy of Landsat 8 OLI data was 97.28% (kappa coefficient = 0.97). 

Ghonein et al., (2024) in their study discriminated the various outcrop lithological rocks with 

the help of Landsat 8/9 satellite in the Eastern desert part of Egypt. They used the SVM 

classifier, PCA and MNF to design a geological map. 

Table 6: Types of Satellite and SVM Techniques used in the research paper 

                         Method = SVM 

   Research Paper   Satellite / Sensor 

  Mahboob et al., (2024)   Landsat 8, Sentinal-2 

  Ghoneim et al., (2024)   Landsat 8/9 

  Shirmard et al., (2021)   Hyperion 

  Lorenz et al., (2021)   UAV 

  Abdolmaleki et al., (2020)   Sentinel-2 

  Cardoso-Fernandes et al., (2020b)   Sentinel-2 

  Bachri et al., (2020)   Landsat 8 

  Rezaei et al., (2020)   Landsat 8 



Xu et al., (2019) ASTER 

Ourhzif et al., (2019)  ASTER, Lansat-8 OLI  

Ge et al., (2018) Sentinel -2 

Othman and Gloaguen (2014) ASTER 

Wang and Zhang (2010) Hyperion 

  

2.3 K-means clusters Method: 

According to Lloyd (1982), K-means clusters (KMC) are a group of clusters made by 

separating N number of data points which have the smallest difference among its value or mean 

value. The K-means clustering technique can handle high-dimensional datasets (Tang et 

al.,2019). KMC is mainly used to recognize objects generated using hyperspectral images. Ren 

et al., (2019) in their new KMC algorithm used for mining purposes, classify minerals using 

hyperspectral images. In the study, he proved that the KMC algorithm shows a stronger 

clustering result as compared to the conventional algorithm method used for designing various 

mineral distribution maps. Even in many research papers, KMC is combined with the image 

extracted from Remote Sensing to generate accurate geological maps. The remote sensing data 

extracted from ASTER, Sentinel 2, Landsat-7 and Landsat-8 were combined with the KMC 

model to generate the lithological map (El Atillah et al., 2019). Later, the result was compared 

with the field to check the accuracy of the KMC model.  

The iterative self-organizing data processing technique (ISODATA) is an unsupervised 

classification approach mainly applied to the multispectral and hyperspectral images generated 

from satellites (Karimi and Peng, 2004). The spectral reflectance of the band is also used to 

generate different clusters.  

Table 7: Types of Satellite and K-Means Clustering Technique used in research paper 

                  Method = K-means Clustering 

   Research Paper   Satellite / Sensor 

Ren et al. (2019) AVIRIS 

El Atillah et al. (2019) ASTER, Sentinel-2, Landsat 8, Landsat 7 

Karimi and Peng, (2004)  ASTER, Sentinel-2, Landsat 7 

 

2.4 Random Forest Method: 

Leo Breiman in 2001 introduced a new concept called Random Forest. It is the supervised 

learning method that is used to create multiple subtrees depending on the parameters (Ganuer 

et al., 2010). This classifier is non-parametric. It uses a voting procedure to ensemble trees for 

classification problems (Dragut,2016). Random Forest uses the concept called the Gini Index, 

which is used for splitting the input variable and finding the best threshold value as well while 

implementing this method, majority voting is also considered (Parmar et al., 2019). In this 

ensemble ML method is used, which is used to create each tree according to its subset while 

the overall prediction is based on all the trees in the ensemble therefore It is also called the 

bagging technique (Richman and Wuthrich, 2020). 

Kuhn et al., (2018) reported that Random Forest acts as an essential tool in gold-rich mineral 

exploration when integrated with the Geo-physical data and Remote sensing data. Even 

Cardoso Fernandes et al., (2019) used SVM along with Random Forest to identify Li-bearing 



pegmatites using Sentinel-2 images. Remote sensing data provide textual, Geomorphic and 

spectral information. Bachri et al., (2020) Mapped lithological unit using Sentinel 2 and Palsar 

data along with random forest technique. Even sometimes to explore the efficiency of metals, 

multi-sensor data along with random forest are calculated (Wang et al., 2020). Random forest 

is also helpful in building a model for specifying the hyperspectral band for the classification 

of minerals like dolomite, talc and calcite (Chung et al., 2020). 

Lu et al., (2022) used satellite Landsat 8 data, the data was collected based on parameters like 

moisture, greenness, reflectance, brightness and temperature on which the Kruskal-Wallis rank 

test was evaluated to find the significant difference among different Rock types on each 

parameter separately. When all the parameters were combined, 85.26% accuracy and 0. 77 

Kappa coefficient was noted. It was a time series data so single data reflectance was checked. 

The combined accuracy indicates that the ground truth and procedure applied with random 

forest show the similarity.  

Mahboob et al., (2024) use machine learning algorithms like SVM, Random Forest and CNN 

to find copper Cu deposits in the Northern Pakistan region. Landsat 8 and Sentinel-2 satellite 

data were used. A prospective map was designed which concluded that the Random Forest 

model was more accurate in detecting copper deposit areas. The prediction model was 

evaluated using a Confusion Matrix, statistical measures and Receiver Operating 

Characteristics (ROC) curve. 

Algorithms like K nearest neighbor, Random Forest and Max likelihood were trained to find 

the best classification accuracy. Among these three, Random Forest proved itself more 

potential and gave 88.38% accuracy, which indicates high accuracy between ground truth 

examined and classified data (Bachri et al., 2022). Xi et al., (2022) also compared the random 

forest technique with the data extracted from Sentinal-2, Landsat 8 and ASTER; in which 

ASTER data accuracy came out to be highest at 81.80% followed by Sentinal-2 accuracy of 

81.60%.  

Table 8: Type of Satellite and Random Forest Technique used in the research paper 

                         Method = Random Forest 

   Research Paper   Satellite / Sensor 

  Wang et al., (2024)   ASTER, Landsat 8 OLI 

  Mahboob et al., (2024)   Landsat 8, Sentinal-2 

  Xi et al., (2022)   ASTER, Sentinel-2, Landsat 8 

  Bachri et al., (2022)   ASTER 

  Lu et al., (2022)    Landsat-8 

  Wang et al., (2020)   ASTER, Sentinel-2 

  Bachri et al., (2020)   Sentinel-2, PALSAR 

  Chung et al., (2020)   Sentinal-2 

Cardoso-Fernandes et al., (2019) Sentinel-2 

Kuhn et al., (2018) Landsat 5 

Cracknell and Reading (2014) Landsat 7 

 

3. Deep Learning: 

Guo et al., (2016) in their study, show that the deep neural network method supports both 

unsupervised learning as well as supervised learning. The deep learning method even supports 



semi-supervised learning where some parts contain labeled examples while a large number of 

unlabeled examples are used to build a model. Large and complex datasets can be loosely 

grouped into recurrent neural networks and feed-forward architecture using deep learning 

methods (Shrestha and Mahmood, 2019).  

3.1 Artificial neural network (ANN): 

ANN working is based on neurons to control the task. This classifier is designed to illuminate 

how humans classify different patterns and how they learn to solve any tasks or problems. A 

machine learning method that deals with complex patterns keeps a record of the functionality 

of dependent variables and explanatory variables and is in non-linear form is termed an 

Artificial Neural Network (lek and Guegan,1999). A potential map of gold mineralization was 

designed along with the unknown potential area that can be further explored for gold mining. 

This study was conducted in the southeast part of Spain popularly known as the Rodalquilar 

gold mines, with the integration of Remote sensing data and ANN technology (Rigol-Sanchez 

et al.,2003). 

Landsat5 and Hyperion data together can be used for lithological mapping. Thematic Mapper 

sensor data was used by Leverington, (2010) along with ANN to develop a model to 

discriminate different lithological groups. Even Wang et al., (2010) used a Neural network 

(Probabilistic type) to examine irregularity among multi-minerals caused by geo-field features. 

In the Henan region of China, the study was conducted to develop a potential map of Pb-Zn-

Ag and molybdenum minerals. Especially Satellite imagery along with the regional geological 

maps were visualized using the ANN method and various lineaments were compared for 

mapping (Borisova et al.,2014) 

Bouwafoud et al., (2021) compared the ANN model with the spectral distance index (SID) 

model with the help of Landsat 8 OLI data. In this study, ANN proved efficient with an 

accuracy of 92.56% while SID was 49. 61% accurate only.  

Multilayer perception (MLP), is used to address problems related to different fields with 

geological mapping (Shirmard et al, 2022). In this ground truth data can be trained with the 

help of a multi-layer perception model to classify multispectral as well as hyperspectral satellite 

images which can provide highly accurate results.  Various lithological maps were generated 

by the researchers using MLP for multispectral images using the Envy platform (Otele et al., 

2021) MLP technique when used with multi-spectral images, leads to faster and more accurate 

results (Venkatesh and Raja, 2003). Shirmard et al., (2020) introduced the application of multi-

layer perception and self-organizing maps in classifying multispectral images generated from 

Landsat satellite using PCA component as input. The deep neural network can be divided into 

a multi-layer perception (MLP), recurrent neural network (RNN), convolutional neural 

network (CNN) and graph neural network (GNN). Among them, CNN is useful in image 

processing purposes (Lecun and Yoshua, 1998). 

Table 9: Showing Satellite and Artificial Neural Network Techniques used in the research 

paper 

                         Method = ANN 

   Research Paper   Satellite / Sensor 

Bouwafoud et al., (2021) Landsat -8 OLI 

Shirmard et al., (2020) Landsat-8 

Borisova et al., (2014) Landsat 7 



Leverington (2010) Hyperion, Landsat 5 

Wang et al., (2010) Landsat 7 

Rigol-Sanchez et al., (2003) Landsat 5 

Venkatesh and Raja, (2003) Landsat 5 

 

3.2 Convolutional Neural Network (CNN) 

Deep Neural Network is also called Convolutional Neural Network. CNN technique is mainly 

used in image processing and target identification by extracting features from different images 

(Li et al., 2020). CNN uses pooling layers as well as convolution layers to extract spatial 

information from the images. Features maps are generated by convolution layers depending on 

the input given to the kernel. This kernel is in the form of a weight matrix (2-dimensional). 

Here the neighboring pixel plays an important role in the formation of different textures. 

Shirmard et al., (2022) classify each pixel based on the digital numbers of the band. In this 

study, a chip (sets of neighboring pixels input in CNN) was created using the size of stride and 

window. Shuo and Kang, (2021) introduce an improved version of CNN, which deals with 

overcoming the problems related to gradient vanishing and overfitting. Newman et al., (2017) 

focus on the high speed and performance ratio using the CNN model. 

Tahmasebi et al., (2020) noted that many CNN architectures are openly available to solve the 

limitation of computation resources when dealing with large numbers of data sets.  Elman 

(1990) stated that in case of the temporal or dynamic data, RNN proves itself more accurate in 

finding the result. Long short-term memory (LSTM) is another type of recurrent neural network 

that can be used for mineral explosion (Hochreiter and Schmidhuber, 1997). CNN when 

combined with LSTM, is useful to handle video processing data (Xia et al., 2020). Even it can 

be useful for spatiotemporal datasets when used with remote sensing applications (Boulila et 

al., 2021). Wang and Zuo (2024) evaluated that CNN can be used for lithological mapping 

using hyperspectral images also. They concluded that minerals that closely resembled and are 

strongly correlated can be explored with the help of hyperspectral satellites. Gaofen-5 satellite 

images were examined and an accuracy of 97.40% was measured.  

Table 10: Type of Satellite and Convolutional Neural Network Technique used in research 

paper 

                         Method = CNN 

   Research Paper   Satellite / Sensor 

  Mahboob et al., (2024)   Landsat 8, Sentinal-2 

  Shirmard et al., (2022)   Landsat-8, Sentinel-2, ASTER 

Sang et al., (2020) UAV 

Zhao et al., (2020) AVIRIS 

Latifovic et al., (2018) Landsat 7, Landsat 5 

 

4. Importance of Explainability 

Explainability is vital in deploying machine learning models for lithological mapping, as it 

ensures trust and understanding among geologists and decision-makers. In fields like mineral 

exploration, where model outputs often guide expensive fieldwork or financial investments, 

being able to interpret and explain predictions is critical. Techniques like Random Forest and 

PCA offer relatively high explainability, providing insights into variable importance or the 



contribution of transformed components to the variance. On the other hand, deep learning 

models like CNNs and ANNs, while highly accurate, are often perceived as black-box models 

due to their complexity. This lack of interpretability can hinder their adoption in geoscience 

applications, where domain experts demand transparency to validate results against geological 

realities. 

5. Practical Challenges of Deployment 

Deploying machine learning models for lithological mapping faces several practical 

challenges. First, the availability of high-quality, labelled datasets is often a bottleneck, 

particularly in remote or unexplored areas. Computational resources pose another constraint, 

especially for advanced models like CNNs, which require significant processing power. 

Additionally, integrating model predictions with on-field geological data is complex, requiring 

iterative validation and fine-tuning to match real-world conditions. Scalability is also an issue; 

for instance, methods like SVM may perform well on smaller datasets but struggle with larger, 

high-dimensional data. Finally, deployment in the field demands robust, resource-efficient 

tools that can handle diverse environmental conditions and deliver actionable insights under 

constrained resources. Addressing these challenges is essential to harness the full potential of 

machine learning in geosciences. 

Result 

This article reviews the implementation of the different types of Machine-learning algorithms 

that can be used for mineral exploration. The remote sensing technique deals with the 

hyperspectral scanner as well as multispectral scanner, which extracts images from space-

borne, airborne and ground-based sensors. The comparative study predicts that the satellites 

mainly used are multispectral e.g. ASTER, Sentinel-2 and Landsat, due to their historical 

coverage.  

Table 10: Accuracy Rate measured while using Remote sensing and ML Techniques 

Techniques Research Papers Satellite Accuracy 

SVM 

Rezaei et al., 2020 Landsat-8 80% 

Petropoulos et al., 2012 Hyperion 76.30% 

Ourhzif et al., 2019 
ASTER 74.88% 

Landsat-8 97.28% 

Object-Based Classification 
Petropoulos et al., 2012 Hyperion 81.30% 

Ge et al., 2018 Sentinal-2 90.83% 

Random Forest 

Lu et al., 2022 Landsat -8 85.26% 

Bachri et al., 2022 ASTER 88.38% 

Xi et al., 2022 
ASTER 81.80% 

Sentinal-2 81.60% 

ANN 
Bouwafoud et al., 2021 Landsat-8 

92.56% 

Spectral distance Index (SID) 49.61% 

CNN Wang and Zuo, 2024 Goafen-5 97.40% 

 

The SVM when used with Landsat-8 images provides more than 80% accuracy. Object-based 

classification works best when used with remote sensing techniques to explore the area while 

the Random Forest technique overall proved its excellence in exploring the remote sensing 



images. Only a few experiments are conducted using deep learning but the accuracy with which 

the results obtain are more than 90%. As Earlier only unsupervised learning methods were used 

along with HIS because it requires large numbers of labelled data to work upon. But in the last 

few years, CNN Deep learning techniques have been used to excess hyperspectral images for 

lithological mapping. 

Annexure 1 contains the summarized table, including the evaluation metrics used in each model 

to check the accuracy rate. It even describes the data requirements, explainability, practical 

challenges and limitations while implementing the models. 

Conclusion and Future Prospectives: 

The key issue is the quality and availability of data, with limited ground truth data and the 

challenge of distinguishing between minerals with similar spectral signatures. The complexity 

of geological environments, where surface data may not reveal subsurface deposits, adds to the 

difficulty. While deep learning models like CNNs can handle complex data, they often lack 

interpretability, making it hard for geologists to trust their predictions. Overfitting and the 

integration of various data sources are additional hurdles. Looking forward, advancements in 

sensor technology, such as hyperspectral imaging and better integration of multisource data 

will enhance our ability to identify mineral deposits accurately. 

In the flourishing land of mineral exploration, deep learning offers state-of-the-art methods that 

markedly boost our chances for mineral detection. Conventional Neural Networks (CNNs) are 

the technological marvels of spectral and spatial data, the two of which are the deciding factors 

for the minerals with similar signatures. Integrating the RNN and LSTM enables temporal 

snapshots of a mineral deposit while the Transformer models provide them with a tool that can 

perceive relationships in data. Generative Adversarial Networks (GANs) function as a bridging 

technique for data augmentation and discrepancy detection in instances where the available 

amount of labeled data is not much. Also, targeted designs, UNet and SegNet are specialists in 

image segmentation showing the path to extract mineral mapping. The increase in the use of 

self-supervised learning and transfer learning extends the horizons of deep learning by 

employing labeled and unlabeled data in the best possible way. Multimodal deep learning that 

considers different data sources combined with 3D CNNs analyzing volumetric data gives a 

more detailed picture of mineral subsurface deposits. 

In summary, the techniques presented here mark new ways of finding lithological maps and 

monitoring areas such as mining exploration, geophysical surveys and environmental 

monitoring through state-of-the-art computer automation systems. The crucial factor is the 

right choice of methods concerning the final goals and the available data. Sentiment of the 

research, when joining hands with Earth observation and ML, will help among other things, in 

getting the understanding of the geophysics of the Earth and the influence of mining and 

smelting on the environment. This not only opens up new possibilities in various fields but also 

enriches our knowledge, driving innovation and progress through these cutting-edge 

approaches. 
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Annexure:1 

Table 11: Summarized table describing the evaluation Metrics, Data requirements, practical 

challenges and limitations experienced while implementing the Machine Learning and Deep 

Learning models. 

Method 
Accur

acy 

Evaluati

on 

Metrics 

Data 

Require

ments 

Explainab

ility 

Practical 

Challenges 
Remarks Limitation

s 

Best Use 

Case 

Support 

Vector 

Machine 

(SVM) 

>80% 

Kappa 

Coefficie

nt: 0.72 

Requires 

labelled 

data 

Moderate 

(supports 

decision 

boundary 

visualizati

on) 

Struggles 

with 

scalability 

on large 

datasets 

Effective 

for small 

labelled 

datasets 

Struggles 

with large 

datasets 

Spectral-

based 

lithologic

al 

mapping 

Random 

Forest 

88.38

% 

ROC, 

Confusio

n Matrix 

Moderate 

labelled 

data 

High 

(variable 

importanc

e can be 

derived) 

Overfitting 

risk without 

proper 

parameter 

tuning 

Works 

well with 

multisens

ory data 

Can overfit 

without 

parameter 

tuning 

Mineral 

deposit 

detection 

using 

multi-

sensors 

K-Means 

Clusterin

g 

Varies 

Cluster 

Compact

ness 

Minimal 

labelling 

required 

Low 

(unsupervi

sed; 

cluster 

interpretab

ility can be 

subjective) 

Requires 

pre-

selection of 

cluster 

count 

Handles 

high-

dimension

al datasets 

Requires 

optimal 

cluster 

count 

selection 

Quick 

clustering 

of 

lithologic

al features 

Convoluti

onal 

Neural 

Network 

(CNN) 

>90% 

Precision

, Recall, 

F1-Score 

Requires 

large 

labelled 

datasets 

Low 

(black-box 

nature; 

difficult to 

interpret 

results) 

Computatio

nally 

intensive; 

high 

resource 

demand 

Superior 

for image 

processin

g tasks 

Computatio

nally 

intensive 

Lithologic

al 

mapping 

with 

hyperspec

tral 

imaging 

Principal 

Compone

nt 

Analysis 

(PCA) 

74%  

Variance 

Explaine

d 

None 

High 

(transform

s data to 

explain 

maximum 

variance) 

Limited to 

linear 

relationship

s 

Efficient 

dimension

ality 

reduction 

Limited to 

linear 

relationship

s 

Preproces

sing for 

dimension

ality 

reduction 

Object-

Based 

Classifica

tion 

81.30

% 

Kappa 

Coefficie

nt: 0.779 

Requires 

spatial 

data 

Moderate 

(segmentat

ion-based 

results are 

Dependent 

on 

segmentatio

n quality 

More 

accurate 

than SVM 

for spatial 

Dependent 

on 

segmentati

on quality 

Mapping 

geological 

features in 

spatial 



Method 
Accur

acy 

Evaluati

on 

Metrics 

Data 

Require

ments 

Explainab

ility 

Practical 

Challenges 
Remarks Limitation

s 

Best Use 

Case 

interpretab

le) 

and 

thresholds 

datasets data 

Light 

Gradient 

Boosting 

Machine 

(LightGB

M) 

~85% 

Softmax 

Function 

Iterations 

Requires 

labelled 

geochemi

cal points 

Moderate 

(interpreta

bility 

through 

feature 

importanc

e) 

Sensitive to 

hyperparam

eters; may 

require 

frequent 

tuning 

High 

accuracy 

with 

minimal 

computati

on time 

High 

sensitivity 

to 

parameter 

tuning 

Geologica

l mapping 

in 

complex 

terrains 

Artificial 

Neural 

Network 

(ANN) 

92.56

% 

Accurac

y, RMSE 

Requires 

labelled 

training 

data 

Low 

(black-box 

nature; 

limited 

interpretab

ility) 

Overfitting 

risk; 

requires 

large and 

clean 

datasets 

Effective 

for 

complex 

non-linear 

relationsh

ips 

May overfit 

with 

insufficient 

data 

Potential 

mapping 

for 

resource 

exploratio

n 

 

 

 

 

 

 

 

  


