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Abstract— Migraine (MD) is a neurological disorder that can 

present with auditory and visual symptoms known as aura, 

affecting approximately one billion people globally. This 

condition causes temporary disability and can progress to 

serious diseases such as epilepsy or stroke, resulting in 

significant losses in society’s productivity. The overlap of 

migraine symptoms with other illnesses complicates the 

diagnosis process for medical professionals. To improve 

healthcare and patient care beyond traditional methods, we 

have developed a machine learning model to help doctors 

diagnose and differentiate between migraine types, with and 

without neurological aura. The model uses EEG signals from 

visual stimuli and analyzes them using discrete wavelet 

transform (DWT) to extract frequency bands: alpha, beta, delta, 

theta and gamma. The data is then augmented without 

exceeding the original frequency bands. Each participant's data 

is organized into a matrix, with rows representing channels and 

columns for the frequency bands. A majority voting mechanism 

determines the final classification; if most channels indicate a 

specific type of neural activity, the participant is classified 

accordingly. Our model achieved a classification accuracy of 

90.58%, effectively diagnosing migraines and distinguishing 

their main types. By integrating advanced signal processing with 

machine learning, our model represents a significant 

advancement in migraine diagnosis and enhances patient care. 
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I. INTRODUCTION  

Migraine is a complex neurological disorder with a genetic 
origin, involving intricate interactions between various 
nervous systems and manifesting through a range of 
symptoms. These symptoms include increased sensitivity to 
light, sound, touch, and smell [1]. Additionally, there are 
trigger factors such as certain hormones and psycho-
physiological stress [2]. It affects approximately one billion 
people, leading to social and economic burdens as well as 
absenteeism from work and study [3]. Migraine is the third 
most common disease and the leading neurological disorder 
globally [4]. There are various forms of migraine, each with 
overlapping yet distinct clinical symptoms. Migraine 
headaches are divided into two primary types: Migraine 
without Aura (MwoA), which occurs without any preceding 
neurological symptoms, and Migraine with Aura (MwA), 
characterized by neurological signs such as visual 
disturbances or sensory changes prior to the onset of the 
headache. MwA appears to be more closely related to anxiety 
and epilepsy compared to MwoA. Additionally, MwA 
increases the risk of vascular conditions like stroke and may 
be linked to silent brain damage. Clinical observations 

indicate that the slow spread of migraine aura symptoms 
occurs at a rate of approximately 3 mm per minute, leading to 
the proposition that cortical spreading depression (CSD) 
serves as the pathophysiological basis for migraine aura [5]. 
The diagnosis of migraine relies on a specific set of symptoms, 
making it challenging to rule out other potential causes, and 
traditional methods (such as symptom assessment and medical 
tests) are often inadequate [6]. Personalizing clinical care is 
essential due to the limitations of conventional symptom-
based evaluations, which tend to be slow, burdensome, and 
frequently inaccurate [7]. In cases of atypical presentation, 
untreated migraine attacks can last anywhere from 4 to 72 
hours, significantly impacting the patient's quality of life and 
the overall health of the community. In recent years, numerous 
machine learning techniques have been explored proving 
effective in addressing diagnostic challenges [8]. Two notable 
approaches that have gained considerable attention for 
studying the neural mechanisms of migraine and 
distinguishing between its types are EEG 
(electroencephalogram) and fMRI (Functional Magnetic 
Resonance Imaging), particularly when combined with 
machine learning. Recent studies suggest that EEG is the more 
commonly used method [9]. 

     Electroencephalography (EEG) is an economical and 
non-invasive neuro-electrophysiological technique that is 
extensively utilized in both medical and non-medical 
applications [10]. It records electrical signals from the brain 
over time, which are inherently complex and often 
disorganized[11]. EEG microstate analysis enables the 
assessment of the brain's functional state on a sub-second 
timescale, offering very high temporal resolution [12]. To 
capture a patient's brain signals, electrodes are placed on the 
scalp following the 10-20 international electrode positioning 
system. 

     EEG signals are analyzed by breaking them down into 
multiple components, which helps identify the active 
frequency components at any given moment [13]. These brain 
signals consist of various fundamental flows, organized into 
EEG rhythms or frequency bands, each corresponding to 
different mental or cognitive states. Rhythms such as theta, 
delta, alpha, beta, and gamma can be observed, reflecting 
varying brain functions. Minor variations in these patterns can 
assist in diagnosing neurological disorders [14]. For example, 
low alpha band power has been observed, along with a lack of 
similarity in relation to the painful side before and during 
episodes without aura, compared to the partial phase. This 
inconsistency in the alpha range has been noted prior to 
migraine episodes with aura [2]. 
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     Additionally, individuals experiencing migraines with 
episodes of altered consciousness and neurological deficits 
exhibit frontal intermittent rhythmic delta activity (FIRDA) 
during and immediately after migraine attacks. This suggests 
dysfunction not only in the upper brainstem but also in the 
occipital and medial temporal lobes [15]. 

Signal processing algorithms are employed to extract 
symptoms and diagnose neurological disorders from complex 
EEG data. In addition, machine learning (ML) and deep 
learning (DL) techniques offer powerful tools for analyzing 
these signals [16]. Due to the non-linear nature of EEG data, 
the expertise of a trained neurologist is crucial for identifying 
abnormal patterns linked to such disorders. However, the 
effectiveness of visual assessments can vary significantly. 
Manually reviewing long EEG recordings is time-consuming 
and may lead to inconsistent results. With some human 
oversight, an automated system can accurately detect 
neurological conditions and monitor brain activity [17]. 

EEG signals are affordable, non-radioactive, and non-
invasive, which makes them widely utilized for identifying 
brain abnormalities [19],[18]. A key advantage of EEG is its 
remarkably high temporal resolution, enabling the capture of 
electrical impulses thousands of times each second [19]. For 
this reason, this method of recording brain signals was utilized 
in our research. 

II.  MATERIAL AND METHODS 

     This section outlines the dataset utilized, the 
preprocessing techniques employed, and the method for 
extracting key features to be used as inputs for machine 
learning classifiers. and Figure 1 provides an overview of the 
method proposed for diagnosing migraines using EEG signals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. the structural diagram for the Migraine Classification System. 

 

A. Participants and the recording of data 

     The recently released EEG dataset, available on KiltHub, 
Carnegie Mellon University's online data repository [20], was 
recorded using the BioSemi Active Two device. It features a 
sampling frequency of 512 Hz, utilizing a 24-bit analog-to-
digital converter (A/D) with 128 channels. The dataset 
comprises EEG recordings from 18 migraine sufferers (aged 
19-54 years; 13 females and 5 males) and 21 control subjects 

 

 
 
 
 
 
 
 
 
 
 

 



(12 females and 9 males) during periods of visual and 
auditory stimulation, as well as during the rest period 
(without stimuli). Participants were recruited from the 
Pittsburgh area and Carnegie Mellon University, and they had 
no neurological or psychological diagnoses (other than 
migraine) or a history of severe head injury or concussion, 
and all participants had normal hearing. According to their 
self-reports, their vision was either normal or corrected to 
normal. 
     For visual stimulation, vertical sinusoidal-wave gratings 
were presented at a spatial frequency of 0.05 cycles per 
degree (cpd), meaning the grating pattern repeated every 20 
degrees of visual angle. This low spatial frequency produced 
widely spaced stripes that appeared less detailed. The 
gratings were shown alongside a fixation cross. Reference 
[21] details the stimuli, recording methods, and findings on 
cortical coherence abnormalities in migraine detected with 
ultra-high-density EEG. In our study, we focused on the 
visual stimulation condition and selected fifteen out of the 
128 channels due to their association with migraine pain sites 
[22] and their common use in migraine classification research 
[23], [24]. This selection also aimed to reduce data 
dimensionality and model complexity. The channels used 
were: (Fp1, F7, C3, Pz, Fp2, Fz, F8, Cz, C4, F3, F4, P3, P4, 
O1, O2), and their locations on the head are depicted in Fig.2. 

 
                      Fig.2. Positioning of EEG electrodes 

 

B.  Preprocessing stage 

     The experiment was conducted for visual stimulation, 
during which 15 channels associated with migraine pain areas 
were recorded to simplify the analysis. The data for these 
channels were converted from BDF format to EDF format 
using EDF Browser software, as EDF is more compatible 
with our research requirements and is commonly used for 
EEG data. During the preprocessing stage, EEG signals are 
filtered to minimize noise. Various filtering techniques are 
employed to eliminate unwanted low-frequency and high-
frequency signals. EEG data frequently contains artifacts and 
noise from multiple sources, such as electrical appliances and 
lighting, which can introduce interference into the EEG 
recordings. 
     Signal interference may occur if the patient's eyes or 
muscles move as a result of breathing during recording, 
which affects the recorded electrical signals.First, a notch 
filter is applied to remove the specific 50 Hz frequency, 
Which helps eliminate alternating current interference from 
power lines from electroencephalogram (EEG) signals. [25]. 
Next, a high-pass filter is used to remove low frequencies, 
specifically filtering out frequencies below 4 Hz. This 

process preserves signals in the intermediate frequency range 
between 4 and 50 Hz, enhancing the signal-to-noise ratio and 
improving classification accuracy [26]. 
     In the final stage, the detrend function with the 'constant' 
option is applied to eliminate the signal's mean value, 
effectively removing any constant bias or offset. After 
applying the notch filter and high-pass filter, the detrend 
function calculates the mean of the filtered signal and 
subtracts it from each data point. This enhances signal quality 
by removing any constant offset, facilitating the analysis of 
the true physiological components of the signal. For instance, 
if an EEG signal exhibits baseline drift due to sensor 
movement, the detrend function will correct this by centering 
the signal around zero while retaining all original changes 
and patterns. This ensures that the signal contains important 
information without consistent bias, allowing for more 
accurate interpretation of brain activity. 

C.  Feature Extraction 

     Once the waves are read and filtered, a high-dimensional 
array of overlapping signals is obtained. To simplify the 
analysis and focus on essential data, the features must be 
meaningful for model learning tools; they should be 
discriminatory and non-redundant to fully leverage the data. 
This is accomplished through optimal feature selection and 
dimensionality reduction [27]. 
The feature extraction process transforms raw data into 
meaningful features, capturing relevant information and 
patterns for easier analysis and modeling. This reduces data 
dimensionality and filters out noise, enhancing machine 
learning algorithm performance. 
 
     The Discrete Wavelet Transform (DWT) uses discrete 
wavelet coefficients (db8) to characterize EEG signals, 
increasing their relevance through statistical representation 
[28]. It converts discrete temporal signals into wavelet 
representations [25]. In the DWT process, the initial signal is 
divided into two components: approximation, which captures 
low-frequency information, and detail, which highlights 
high-frequency details. Only the approximation component 
undergoes further decomposition, continuing until a 
predetermined level is reached [29]. The approximation 
component typically extracts low-frequency activities like 
theta and delta waves, while the detail component captures 
high-frequency activities such as alpha, beta, and gamma 
waves. 
     The db8 function uses wavelet analysis to decompose the 
signal into 8 different scales, providing a detailed view of the 
frequency components. Specific frequency bands are 
reconstructed from the wavelet coefficients, isolating the 
detailed components of each band. We then analyze the 
frequency content using the Fast Fourier Transform (FFT), 
identifying the dominant frequency within each band and 
plotting the frequency spectrum. 
Thus, we obtain a matrix of dimensions (15 x 5), where the 
first dimension (15) indicates the number of channels used to 
record brain electrical activity, and the second dimension (5) 
represents the five known brain frequency bands: delta, theta, 
alpha, beta, and gamma. 



D.  Data Augmentation 

     Because the dataset we obtained was small and we were 
unable to gather further real data from migraine patients to 
integrate with the Carnegie Mellon University data, we 
generated supplemental data in the frequency domain 
based on the original data [30]. A machine learning 
(ML) prediction algorithm leverages hand-crafted 
features of EEG signals from the time domain, 
frequency domain, or time-frequency domain to make 
predictions [31]. The original data for visual stimulation 
was used to expand the data set, as it yielded good 
results and is more commonly used than auditory 
stimuli. Each category was organized into three separate 
Excel files: one for migraine without aura, one for migraine 
with aura, and one for healthy individuals. We augment the 
original data by generating new synthetic samples. The 
minimum and maximum values of the columns representing 
brain frequencies (delta, theta, alpha, beta, and gamma) are 
calculated from the original data for each category separately. 
A new set of samples is then created by generating random 
values between the minimum and maximum of each column 
(frequency range). The data in the last column remains 
unchanged as it represents classifications. This method 
increased data diversity and balance across three categories, 
yielding a total dataset size of 7,545 data points (503 
persons). There were almost 2,400 data points for the HC 
class (160 individuals), 2,550 for the MWoA class (170 
individuals), and 2,505 for the MWA class (167 individuals). 
This method succeeded in reducing the significant difference 
between categories in the original version, the augmented 
samples are saved in a new Excel file. 

E.  Migraine Classification 

     At this stage, we will split the data into training and test 
sets to develop a model that can detect migraines and support 
clinical assessments. We focus on machine learning 
classifiers due to the small dataset size and the variety of 
parameters they offer, enabling optimal settings for improved 
accuracy. Their effectiveness with digital data and popularity 
in neurology also make them suitable. Most importantly, 
these classifiers operate in a supervised manner, which is 
essential for classifying migraine-related features and 
distinguishing them from those of healthy individuals. These 
classifiers provide fast and efficient performance, making 
them preferable. Among these classifiers are: Naive Bayes 
(NB) is a classification technique grounded in Bayes' 
theorem. It generates frequency tables that display the 
frequency of attribute values for each potential class. These 
tables are then converted into probability tables using class 
and overall frequency ratios, with prior probabilities for both 
the class and predictor calculated [32]. 
Decision Trees (DTs) are tree-like models utilized in 
supervised data mining. They feature internal nodes that 
represent attribute tests, branches that reflect test outcomes, 
and leaf nodes that indicate class names. The root node 
contains all tuples, and classification is performed by 
branching and splitting based on data properties [33]. 
Random Forest (RF) classifiers consist of an ensemble of 
randomly generated trees. Leaf nodes are labeled based on 
posterior distributions for different classes, while internal 
nodes perform tests for data partitioning [27]. Randomness is 

introduced by subsampling the data and selecting node tests 
during training [34]. Classification is achieved by 
aggregating predictions from the individual trees to arrive at 
a final decision. Since each participant has multiple rows 
(channels), the data from multiple channels for each 
participant is organized into a matrix or a multidimensional 
data structure. Typically, the rows of the matrix represent the 
channels, while the columns correspond to the delta, theta, 
alpha, beta, and gamma frequency bands. A majority voting 
mechanism is then applied to determine the final 
classification for that participant. Although this method does 
not directly reduce dimensions, it simplifies the decision-
making process. For example, if most channels indicate a 
particular type of neural activity, the participant is classified 
accordingly [35]. 
     We start with reading data from an Excel file. Features are 
extracted from this data (specifically, medical frequencies in 
this case) along with labels indicating the categories into 
which participants are classified. The participants' data is then 
divided into two sets: training and testing. Using the start and 
end indexes for each participant, a random index for selection 
is generated, allocating 75% of the data for training and 25% 
for testing. The following models are then trained: 
     The models used are Naive Bayes (NB) and Random 
Forest (RF). The fitcnb function creates the NB model, with 
several key parameters specified. The 'DistributionNames' 
and 'kernel' parameters set the data distribution using kernel 
density estimation, while the 'Width' parameter, set to 0.05, 
controls the smoothness of the estimated distribution by 
defining the kernel width. Additionally, the 'Prior' parameter 
is set to 'uniform', ensuring that prior probabilities for each 
class are evenly distributed, meaning no class is favored 
before training. The Random Forest model is trained using 
the bagging technique with 75 learning cycles, employing 
decision trees as individual learners. For prediction, the 
model applies majority voting across these decision trees to 
classify each row of the test data. In this method, each of the 
15 rows for each participant is independently predicted using 
the trained model. The final classification for each participant 
is then determined through majority voting among the 
predictions from the 15 rows. If the majority of the rows 
indicate a specific type of neural activity, such as migraine 
with aura, migraine without aura, or healthy, that type is 
considered the final classification for the participant. This 
approach helps reduce the 15 classifications to a single final 
classification for each participant, facilitating the 
classification process and improving accuracy in the results. 
 
To evaluate the models' performance, a confusion matrix is 
employed, comparing the actual ratings to the predicted 
ratings. 
     Various performance metrics, including accuracy, 
sensitivity, and specificity, are calculated for each class, along 
with overall performance metrics such as overall accuracy 
and the F1 score. 
This organization and design of the code aim to achieve 
accurate and efficient classification of the available medical 
data using Naive Bayes and Random Forest classifiers in 
MATLAB. For further verification, the classification process 
was conducted using a Random Forest model implemented 
with the fitcensemble function to analyze EEG signals and 
identify patient cases, whether healthy, suffering from 



migraine without aura, or experiencing migraine with aura, 
using k-fold cross-validation. 
Initially, data is read from the Excel file, where the extracted 
features are the brain frequencies: delta, theta, alpha, beta, 
and gamma, while the labels represent the classifications in 
the dataset. The number of folds for cross-validation is set to 
5 (k = 5), and a matrix is initialized to store the model 
accuracy for each fold. The start and end indexes for each 
participant are specified to ensure their data is grouped 
together. 

 
     To achieve data balance among the different classes, the 
number of samples in the smaller classes is increased to 
match the largest class. Variables necessary for calculating 
true positives (TP), false positives (FP), true negatives (TN), 
and false negatives (FN) are initialized. A table is created to 
store the results (model accuracy, sensitivity, specificity, and 
F1 score) for each fold, along with another table for the test 
results of each participant across the folds. Random 
participant indices are generated and stratified for cross-
validation, ensuring that the model is trained and tested on 
different samples in each fold. After training the model, 
evaluation is performed on the test data Performance 
indicators—accuracy, sensitivity, specificity, and F1 score—
are calculated for each fold, and overall performance scores 
are aggregated across all folds. 
     The overall performance metrics are defined as follows: 
Accuracy: The percentage of samples that are classified 
correctly. 
Sensitivity: The ability to correctly identify positive cases. 
Specificity: The ability to correctly identify negative cases. 
F1 Score: A harmonic measure that combines accuracy and 
sensitivity. 
The final results are presented, along with the distribution of 
patients according to their classifications: (0 = healthy, 1 = 
migraine without aura, 2 = migraine with aura). 

III. RESULT 

 
   Here, the data was divided consistently into 25% test set 
and 75% training set 

 
Fig.3.  shows the result obtained for RF and NB classifiers 

 
     To accurately validate the performance of this method, we 
employed the Random Forest classifier using five-fold cross-
validation. The results are shown in Fig.4 below, with the 
highest accuracy achieved across the folds being 92.73%.      

 
 

Fig.4. shows the average accuracy obtained 

 

IV.  DISCUSSION 

      In this study, we utilized EEG signals from visual 
stimulation, focusing on the following channels: Fp1, F7, C3, 
Pz, Fp2, Fz, F8, Cz, C4, F3, F4, P3, P4, O1, and O2. After 
processing and filtering the signals, distinctive features were 
extracted using the db8 function, a Daubechies wavelet of 
order 8, to effectively analyze the signals in the frequency 
domain, where the signal is decomposed into various 
frequency levels. Additionally, the (FFT) was employed to 
identify the dominant frequencies. As a result, for each 
participant, a matrix with 15 rows (representing channels) 
and 5 columns was created, representing the dominant 
frequencies for the delta, theta, alpha, beta, and gamma 
bands. 

             The visual stimuli data were then augmented, and the 
participants' data were represented as matrices. The final 
classification was based on majority voting using this matrix 
representation. The Random Forest classifier achieved higher 
accuracy compared to the Naive Bayes classifier. This study 
is the first to use this data set, after augmenting it, to 
distinguish between migraine types and healthy controls, 
while previous studies focused only on diagnosing migraine 
versus healthy individuals. It achieved a randomization 
success rate of up to 90%. Despite these advantages, there are 
certain limitations. The focus was placed on channels 
believed to be more sensitive to migraines, with only 15 
channels out of 128 being used, leaving the rest of the 
channels ignored. To our knowledge, no previous study has 
investigated the effect of visual stimulation in this context, 
and therefore, there is no research to directly compare our 
results with.     

 

V. CONCLUSION 

     We introduced a robust model that integrates db8 feature 
extraction with machine learning algorithms, specifically 
Random Forest (RF) and Naive Bayes (NB), to detect 
migraines and their various types. This study highlights two 
key aspects: 

(a) The utilization of channels that are particularly sensitive 
to migraines, 

(b) Implement the db8 wavelet function and FFT to extract 
important features represented by brain frequencies known as 
delta, theta, alpha, beta, and gamma. 

     The objective of the proposed method is to leverage 
machine learning for the automatic diagnosis of migraines 
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through the analysis of EEG signals across 15 channels. 
Experimental findings indicate that the RF algorithm delivers 
superior performance. This model is expected to aid 
clinicians in accurately diagnosing migraines and distinguish 
their types. 
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