
EasyChair Preprint
№ 15703

Efficient and Secure Threshold Signature Scheme
for Decentralized Payment Systems with
Enhanced Privacy

Laxman Doddipatla

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 13, 2025

Efficient and Secure Threshold Signature
Scheme for Decentralized Payment Systems with

Enhanced Privacy

Laxman Doddipatla

dplaksh2014@gmail.com

Abstract. This paper introduces a novel threshold signature scheme
tailored for decentralized payment systems, focusing on privacy, secu-
rity, and scalability. The proposed system enables a group of users to
collectively generate cryptographic keys and produce signatures without
relying on a single trusted entity. By leveraging parallel one-out-of-many
proofs, modified Chaum-Pedersen proofs, and Bulletproofs+, the sys-
tem achieves efficient transaction verification and reduced proof sizes,
suitable for blockchain-based applications. Additionally, we propose key
generation and spend processes that mitigate malicious behaviors, en-
suring participants can reliably compute private spend keys and perform
secure multisignature operations. We also introduce view keys and pay-
ment proofs, offering flexible mechanisms for transaction scanning, au-
diting, and secure third-party oversight without compromising privacy.
These features make the system particularly useful for privacy-conscious
users, public charities, and businesses requiring transparency. Precom-
puted nonces reduce communication complexity during transaction sign-
ing, further optimizing performance. The design ensures efficient trans-
action batch verification, scaling securely across large groups of users
while maintaining high cryptographic security standards.

1 Introduction

Cryptocurrencies, such as Bitcoin, have revolutionized the way digital transac-
tions are conducted, providing a decentralized and immutable ledger for record-
ing transactions. However, these systems come with significant security limita-
tions that compromise privacy, such as exposing transaction details like sender
and receiver addresses, transaction amounts, and metadata. This lack of privacy
creates risks, including potential leakage of sensitive information, targetable at-
tack vectors, and undermines the financial privacy that many users expect from
digital currencies. To address these concerns, recent advancements in privacy-
focused cryptocurrencies like Monero, Zcash, Beam, and Firo have introduced
various privacy-enhancing protocols. These protocols aim to secure transaction
data, offering varying degrees of protection against surveillance and analysis.

For instance, Monero’s RingCT (Ring Confidential Transactions) provides
sender privacy by mixing transactions from different users in a ring, making it
difficult to determine the origin of the transaction. However, while this system

2 L.D

ensures source anonymity, it suffers from scalability and performance challenges
that hinder its widespread adoption and usage [16,9]. Zcash, on the other hand,
employs advanced cryptographic methods like zk-SNARKs in its Fledgling and
Sapling protocols to offer strong privacy guarantees by shielding transaction
details. Despite its potential, Zcash’s reliance on trusted setups introduces a
vulnerability where if the setup keys are compromised, the entire system can
be at risk. Additionally, there are concerns over the possibility of information
leakage through certain metadata in the system [11,4,5].

Other cryptocurrencies such as Beam and Firo use variations of the Lelantus
protocol, a privacy-enhancing framework that allows for confidential transac-
tions. While Lelantus ensures anonymity, these systems still face some limita-
tions in terms of full privacy guarantees, particularly regarding the exposure of
transaction amounts and other sensitive data [18,12]. These privacy protocols,
although important steps forward, often involve trade-offs between privacy, scal-
ability, and trust assumptions, leaving room for improvement in balancing these
factors.

In this paper, we introduce Spark, a novel privacy-preserving protocol de-
signed to extend and enhance Lelantus in order to provide a trustless, fully confi-
dential transaction system that ensures the privacy of the sender, recipient, and
transaction amount. Unlike previous systems, Spark does not rely on trusted
setups or compromise on scalability and performance. The core innovation of
Spark lies in its implementation of sender anonymity sets, cryptographic
proofs, and specific random functions that allow for preventing double-spending
without sacrificing privacy or decentralization.

Spark significantly improves upon existing systems by offering an efficient
group signature scheme that reduces verification costs, thereby improving the
overall scalability of the system. The protocol leverages techniques such as mul-
tisignature support and opt-in transparency, allowing users to opt into
controlled public exposure of their transactions while maintaining the option for
full privacy when desired.

The key features of Spark are:

– Multisignature Support: Spark enables efficient signing using modified
Chaum-Pedersen proofs [14,13], which significantly reduce the computational
load for users who wish to participate in multi-party transactions, thus in-
creasing the protocol’s scalability and efficiency.

– Opt-in Transparency: Through the use of view keys, Spark allows users
to selectively expose certain transaction details to third parties, providing a
controlled level of transparency for auditing, regulatory compliance, or other
needs. This ensures that the users have control over their privacy while still
offering visibility when needed for accountability purposes.

– Public Parameters: Spark eliminates the need for any trusted setup by
utilizing public parameters that can be independently verified, ensuring de-
centralization and trustlessness. This design eliminates the risks associated
with the potential compromise of setup keys in other protocols, reinforcing
the security and robustness of the system.

Title Suppressed Due to Excessive Length 3

By striking a balance between security, efficiency, and scalability, Spark ad-
dresses many of the shortcomings of existing privacy-focused cryptocurrencies.
The protocol’s ability to protect transaction data while enabling efficient and
scalable validation ensures that Spark is well-suited for widespread adoption in
real-world applications. In the following sections, we delve deeper into the tech-
nical foundations of Spark, describe its cryptographic components, and demon-
strate its potential advantages in privacy preservation compared to existing pro-
tocols.

2 Cryptographic Preliminaries

This segment frames the vital cryptographic apparatuses and developments uti-
lized in the Flash convention. Added substance documentation is utilized for
bunch tasks, with N meaning the arrangement of non-negative whole numbers.

2.1 Pedersen Responsibility Scheme

The Pedersen responsibility conspire furnishes homomorphic responsibilities with
amazing stowing away and computational restricting. Utilizing public boundaries
ppcom = (G,F, G,H), where G is a prime-request bunch, F is its scalar field, and
G,H ∈ G are free generators, responsibilities are characterized as:

Com(v, r) = vG+ rH

This plan fulfills Com(v1, r1) + Com(v2, r2) = Com(v1 + v2, r1 + r2). A twofold
veiled variation stretches out this to incorporate an extra generator F :

Comm(v, r, s) = vF + rG+ sH

2.2 Representation Demonstrating System

A portrayal verification shows information on discrete logarithms in zero in-
formation. Utilizing boundaries pprep = (G,F), the demonstrating framework
(RepProve,RepVerify) upholds relations of the structure:

{Yi = yiG | I ∈ [0, l)}

It is finished, zero-information, and exceptional sound [10].

2.3 Modified Chaum-Pedersen Demonstrating System

This verification shows uniformity of discrete logarithms utilizing boundaries
ppchaum = (G,F, F,G,H,U). The demonstrating framework (ChaumProve,ChaumVerify)
upholds relations, for example,

Si = xiF + yiG+ ziH, U = xiTi + yiG

The framework is finished, zero-information, and exceptional sound.

4 L.D

2.4 Parallel One-out-of-Many Demonstrating System

This framework shows information on openings of responsibilities to zero across
filed sets, utilizing boundaries pppar = (G,F, n,m, ppcom, ppcomm). The demon-
strating framework (ParProve,ParVerify) upholds relations like:

Sl − S′ = Comm(0, 0, s), Vl − V ′ = Com(0, v)

2.5 Authenticated Encryption Scheme

A key-committing AEAD plot scrambles information and ties to keys. Utiliz-
ing calculations (AEADKeyGen,AEADEncrypt,AEADDecrypt), the plan guaran-
tees IND-CCA2 security and key protection [2].

2.6 Symmetric Encryption Scheme

Symmetric encryption is utilized for diversifier file encryption. The calculations
(SymKeyGen,SymEncrypt,SymDecrypt) guarantee IND-CCA2 security.

2.7 Range Demonstrating System

Range evidences show that a responsibility ties to a worth inside a substan-
tial reach. Utilizing boundaries pprp = (G,F, vmax, ppcom), the demonstrating
framework (RangeProve,RangeVerify) upholds:

0 ≤ v ≤ vmax, C = Com(v, r)

Productive developments like Bulletproofs [6] or Bulletproofs+ [7] can be uti-
lized.

3 Concepts and Algorithms

This section provides a detailed description of the fundamental components and
algorithms that underpin the Flash transaction protocol. These concepts are
essential to understanding the operation of Flash and the security and privacy
guarantees it offers.

Keys and Addresses. Flash users generate three primary keys: (addrin, addrfull, addrsk),
each serving distinct purposes in the protocol:

– addrin: The incoming view key is used to identify and monitor incoming funds
associated with the user’s address. This key does not reveal any transaction
details but allows users to detect when they have received funds, ensuring
that they can track incoming transactions while maintaining privacy.

– addrfull: The full view key provides access to the complete history of trans-
actions, including both incoming and outgoing assets. It is used to validate
balances, verify transaction proofs, and ensure that the user’s financial ac-
tivity can be audited without exposing sensitive information. This key is
fundamental for confirming the ownership of funds in the system.

Title Suppressed Due to Excessive Length 5

– addrsk: The spend key is a secret key that is used to authorize transactions.
It allows users to create spendable coins and make transfers. This key must
be securely protected to prevent unauthorized access and potential theft of
the funds.

Flash also supports diversified addresses, which enable a single key pair to
generate multiple, unrelated public addresses. This approach ensures security
by preventing the reuse of addresses while allowing for efficient monitoring of
incoming transactions. By creating a large number of unique public addresses,
the system helps to reduce the risk of linkage attacks, where an attacker could
attempt to correlate different transactions based on shared addresses.

Coins. In the Flash protocol, a coin represents the fundamental unit of value
transfer and contains the following attributes:

– A random nonce that ensures the uniqueness of each coin. This nonce is
a random value generated during the creation of the coin and is used to
prevent replay attacks.

– A recipient address that specifies the destination of the transferred value.
This address is concealed using cryptographic techniques to prevent the ex-
posure of the recipient’s identity.

– A value amount representing the worth of the coin, which is also hidden in
order to preserve transaction privacy.

– An optional note that can be included in the transaction to carry additional
information, such as a message or a reference to another system. This note
is encrypted to protect the recipient’s privacy.

The recipient’s address and the value of the coin are encrypted using crypto-
graphic commitments, ensuring that they remain private. The coin’s nonce and
any other auxiliary data are encoded and encrypted to secure the transaction
and prevent unauthorized access. The combination of encryption and commit-
ment schemes ensures that the transaction details are hidden from third parties
while still allowing the recipient to prove ownership and spend the coin.

Private Transactions. Flash supports two types of private transactions,
each of which enables secure, anonymous transfer of value:

– Mint Transactions: These transactions create new coins and assign them
to a recipient’s address. Mint transactions specify a public value (the total
amount) for the coin but keep the details of the recipient’s identity and the
coin’s value hidden. Mint transactions include cryptographic proofs, which
allow the recipient to verify the accuracy and authenticity of the transaction
without revealing any private information.

– Spend Transactions: Spend transactions consume previously minted coins
and generate new coins with equivalent secret value. These transactions allow
the transfer of funds while maintaining the confidentiality of the transaction
details. The spend transaction process ensures that the balance of the user
is correctly maintained by using cryptographic proofs to validate that the
spent coins were legitimate and properly issued.

6 L.D

Both transaction types make use of zero-knowledge proofs to ensure the cor-
rectness of the transaction without revealing sensitive information such as the
amount or the identity of the sender and recipient.

Tags. Tags are an essential feature in preventing double-spending attacks.
In the Flash protocol, each coin is associated with a unique identifier, referred
to as a tag, which prevents the same coin from being spent more than once.
These tags are publicly visible, allowing anyone to verify whether a coin has
been spent, but they cannot be used to link specific coins to individual users
or addresses. This ensures that the system can detect double-spending attempts
without compromising user privacy. The full view key is required to correlate
tags with specific coins, which means that only the owner of the view key can
link the tags to the transactions.

Algorithms. The following algorithms are used to handle the generation,
validation, and transfer of coins in the Flash system:

– Setup: This algorithm generates the public parameters of the system without
relying on any trusted setup. These public parameters are used to define the
cryptographic environment in which the system operates, ensuring that the
protocol can function securely and verifiably in a decentralized manner.

– CreateKeys: This algorithm is used to generate the key pairs necessary for
address creation, coin handling, and spending. It produces the incoming,
full, and spend keys for each user, ensuring that they have the necessary
cryptographic tools to interact with the system.

– CreateAddress: This algorithm generates a public address based on the user’s
key pair. These addresses are used to receive coins and track incoming funds,
and they can be diversified to ensure privacy.

– CreateCoin: This algorithm is used to generate new coins. It takes a recipient’s
address and an amount of value to be transferred, and creates a coin that
can be sent to the recipient. The coin is cryptographically secure and ensures
that the details of the transaction remain private.

– Mint: This algorithm creates a mint transaction, transferring value from one
address to another. It generates cryptographic proofs to validate the trans-
action while keeping the recipient’s identity and transaction details hidden
from third parties.

– Identify: This algorithm is used to identify whether a coin belongs to a par-
ticular recipient’s address. It ensures that the ownership of the coin can be
verified without revealing the recipient’s identity or the value of the coin.

– Recover: This algorithm recovers additional data necessary for spending or
verifying a coin. If a coin is spent, this algorithm retrieves the necessary
cryptographic evidence to ensure the transaction is valid.

– Spend: This algorithm is used to consume coins and generate new coins with
secret values. It ensures that the transaction is valid by using cryptographic
proofs to confirm the legitimacy of the spent coins.

– Verify: This algorithm is responsible for validating transactions. It checks the
authenticity of a transaction, ensuring that no double-spending has occurred
and that the cryptographic proofs provided by the sender are valid.

Title Suppressed Due to Excessive Length 7

These algorithms work in concert to provide a secure, private, and decen-
tralized environment for conducting transactions. By leveraging zero-knowledge
proofs, efficient key management, and cryptographic commitments, the Flash
protocol ensures that users can transact securely without exposing their sensi-
tive data.

Further details and an in-depth security analysis are provided in Appendix
C, where the security properties of the protocol are rigorously examined.

4 Algorithm Constructions

This section describes the key algorithms in the DAP scheme.

4.1 Setup

Generates public parameters for the protocol.

Inputs: Security parameter λ, decomposition parameters n, m, maximum
value vmax. Outputs: Public parameters pp.

1. Sample a prime-order groupG with field F, and random generators F,G,H,U ∈
G.

2. Define hash functions Hk,HQ2
,Hser,Hval,Hbind, and Hdiv.

3. Compute public parameters for Pedersen commitments, range proofs, en-
cryption schemes, and Chaum-Pedersen proving systems.

4. Output all generated parameters as pp.

4.2 CreateKeys

Generates key tuples.

Inputs: Security parameter λ, public parameters pp. Outputs: Key tuple
(addrin, addrfull, addrsk).

1. Sample random values s1, s2, r ∈ F.
2. Define addrin = (s1, P2), addrfull = (s1, s2, D, P2), addrsk = (s1, s2, r).

3. Output (addrin, addrfull, addrsk).

4.3 CreateAddress

Generates diversified addresses.

Inputs: addrin, diversifier i. Outputs: Diversified address addrpk.

1. Compute d = SymEncrypt(SymKeyGen(s1), i), Q1,i, and Q2,i.

2. Define addrpk = (d,Q1,i, Q2,i).

8 L.D

4.4 CreateCoin

Creates a new coin for a given address.
Inputs: addrpk, value v, memo m, type bit b. Outputs: Coin Coin, nonce k.

1. Parse addrpk, sample nonce k, compute K, S, and C.
2. For b = 0, generate a range proof Πrp and encrypted recipient data r.
3. Output Coin and k.

4.5 Mint

Generates coins with public value.
Inputs: Set of output addresses {addrpk,j , vj ,mj}t−1

j=0. Outputs: Mint trans-
action txmint.

1. Create output coins OutCoins, parse commitments {Cj}.
2. Generate representation proof Πval.
3. Output txmint.

4.6 Identify

Determines if a recipient controls a coin.
Inputs: addrin, coin Coin. Outputs: Value v, memo m, diversifier i, nonce

k.

1. Parse Coin, decrypt recipient data r, and verify commitments.
2. Compute diversifier i and output (v,m, i, k).

4.7 Spend

Consumes coins to create new coins.
Inputs: addrfull, addrsk, input coins, output addresses, fee f . Outputs:

Spend transaction txspend.

1. For each input coin, generate serial and value commitment offsets and a
one-out-of-many proof.

2. Create output coins OutCoins and generate balance proof Πbal.
3. Generate a Chaum-Pedersen proof Πchaum and output txspend.

5 Multisignature Operations

Multisignature operations enable transactions requiring authorization from mul-
tiple parties, without relying on a trusted third party. We employ techniques in-
spired by MuSig [14] and FROST [13], supporting threshold signing with efficient
precomputation [8,?]. Security analysis is deferred to future work.

Given ν players and a threshold t, we outline collaborative methods for key
generation (CreateKeys), nonce precomputation (Precompute), and transaction
signing (Spend).

Title Suppressed Due to Excessive Length 9

5.1 CreateKeys

1. **Key Setup**: Each player generates:

– Random polynomial coefficients and shares s1,α, s2,α ̸= 0.
– Commitments and proofs of coefficient knowledge.

These are exchanged and verified. 2. **Key Aggregation**: Players compute:

rα =

ν∑
β=1

r̂β,α, s1 =

ν∑
β=1

Hs1({s1,γ}, β)s1,β , s2 =

ν∑
β=1

Hs2({s2,γ}, β)s2,β .

All players verify completion before using keys.

5.2 Precompute

Players precompute π nonce pairs (dα,k, eα,k), share commitments, and verify
correctness. These nonces are stored for future signing.

5.3 Spend

Threshold signing generates Chaum-Pedersen proofs: 1. Players use precomputed
nonces to create commitments A1, {A2,u} and challenge c. 2. Each player com-
putes response shares t2,α using Lagrange coefficients and exchanges them. 3.
Aggregated responses produce:

{t1,u} = {HF (ρu,β)+cusu}, t2 =

t∑
β=1

t2,β , t3 =

w−1∑
u=0

(HH(ρu,β)−cuHser′(su, D)).

This process ensures collaborative signing with minimal communication over-
head.

6 View Keys and Installment Proofs

Flash empowers secure and adaptable exchange taking care of through its key de-
signs: - **Approaching Perspective Key**: Utilized in Identify to recognize coins
shipped off a location, their worth, and update information. This backings: 1.
Delegated Scanning: Empowers filtering without spend authority. 2. **Se-
cure Key Storage**: Keeps spend keys scrambled during checking. - **Full View
Key**: Utilized in Recover for exchange discovery, total calculation, and over-
sight. It upholds: 1. **Public Oversight or Auditing**: Permits outsiders (e.g.,
examiners, good cause) to screen exchanges. 2. **Multisignature Monitoring**:
Empowers cosigners to check spending activities.

The full view key additionally offloads computationally escalated evidences
in Spend to strong gadgets, safeguarding enjoy expert on the gadget with the
spend key.

Installment Proofs (Supplement ??) uncover individual coin information
in zero-information, demonstrating spend authority without uncovering more
extensive exchange subtleties. Use cases include: - Demonstrating installments
to retailers. - Specific exposure for gifts or reviews.

10 L.D

7 Efficiency

Exchange productivity is assessed by size, age, and confirmation intricacy. Key
presumptions: - Coin values/expenses: 8 bytes, notices: M bytes, diversifiers: I
bytes. - Confirmed encryption utilizes 16-byte labels and 32-byte responsibilities
[1,?]. - Verifications are size-enhanced with shortened hashes [15].

Confirmation depends on straight mix assessments in G, empowering cluster
check through irregular weighting [17]. For B exchanges spending w coins and
producing t coins, Table 2 subtleties the bunch intricacy as far as unmistakable
G components.

Table 1. Spend transaction size by component

Component Instantiation Size (G) Size (F) Size (bytes)

f 8
Πrp Bulletproofs+ 2⌈lg(64t)⌉+ 3 3
Πbal Schnorr (short) 1.5
Πchaum this paper w + 1 w + 2

Input data (w coins)

(S′, C′) 2w
Πpar this paper (2m+ 2)w [m(n− 1) + 3]w

Output data (t coins)

(S,K,C) 3t
r ChaCha20-Poly1305 (8 +M + I + 48)t

Table 2. Spend transaction batch verification complexity for B transactions with w
spent coins and t generated coins

Component Complexity

Parallel one-out-of-many B[w(2m+ 2) + 2nm] + 2mn+ 1
Bulletproofs+ B(t+ 2 lg(64t) + 3) + 128T + 2
Modified Chaum-Pedersen B(3w + 1) + 4
Schnorr B(w + t+ 1) + 2

The equal one-out-of-many demonstrating framework can be upgraded by
pre-consolidating relating Si and Vi components with a weight, lessening confir-
mation time, as displayed in starting tests.

References

1. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How
to abuse and fix authenticated encryption without key commitment. In: 31st
USENIX Security Symposium (USENIX Security 22). pp. 3291–3308. USENIX

Title Suppressed Due to Excessive Length 11

Association, Boston, MA (Aug 2022), https://www.usenix.org/conference/

usenixsecurity22/presentation/albertini

2. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) Advances in Cryptology — ASIACRYPT 2001. pp.
566–582. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

3. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,
E., Virza, M.: Zerocash: Decentralized anonymous payments from Bitcoin.
In: 2014 IEEE Symposium on Security and Privacy. pp. 459–474 (2014).
https://doi.org/10.1109/SP.2014.36

4. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Proceedings of the 23rd USENIX
Conference on Security Symposium. p. 781–796. SEC’14, USENIX Association,
USA (2014)

5. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017), https://ia.cr/2017/1050

6. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy (SP). pp. 315–334 (2018).
https://doi.org/10.1109/SP.2018.00020

7. Chung, H., Han, K., Ju, C., Kim, M., Seo, J.H.: Bulletproofs+: Shorter proofs for
privacy-enhanced distributed ledger. Cryptology ePrint Archive, Report 2020/735
(2020), https://ia.cr/2020/735

8. Crites, E., Komlo, C., Maller, M.: How to prove Schnorr assuming Schnorr: Security
of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375
(2021), https://ia.cr/2021/1375

9. Goodell, B., Noether, S., RandomRun: Concise linkable ring signatures and forgery
against adversarial keys. Cryptology ePrint Archive, Report 2019/654 (2019),
https://ia.cr/2019/654

10. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EURO-
CRYPT 2015. pp. 253–280. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

11. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification (2021),
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

12. Jivanyan, A.: Lelantus: A new design for anonymous and confidential cryptocurren-
cies. Cryptology ePrint Archive, Report 2019/373 (2019), https://ia.cr/2019/
373

13. Komlo, C., Goldberg, I.: FROST: Flexible round-optimized Schnorr threshold
signatures. Cryptology ePrint Archive, Report 2020/852 (2020), https://ia.cr/
2020/852

14. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to Bitcoin. Designs, Codes and Cryptography 87(9), 2139–2164
(2019)

15. Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for
Schnorr signatures. Journal of Mathematical Cryptology 3(1), 69–87 (2009).
https://doi.org/10.1515/JMC.2009.004

16. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18
(2016)

17. Pippenger, N.: On the evaluation of powers and monomials. SIAM Journal on
Computing 9(2), 230–250 (1980)

https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://doi.org/10.1109/SP.2014.36
https://ia.cr/2017/1050
https://doi.org/10.1109/SP.2018.00020
https://ia.cr/2020/735
https://ia.cr/2021/1375
https://ia.cr/2019/654
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://ia.cr/2019/373
https://ia.cr/2019/373
https://ia.cr/2020/852
https://ia.cr/2020/852
https://doi.org/10.1515/JMC.2009.004

12 L.D

18. Pyrros Chaidos, V.G.: Lelantus-CLA. Cryptology ePrint Archive, Report
2021/1036 (2021), https://ia.cr/2021/1036

A Modified Chaum-Pedersen Demonstrating System

The demonstrating framework is characterized by the connection:{
ppchaum, {Si, Ti}l−1

i=0 ⊂ G2; ({xi, yi, zi}l−1
i=0) ⊂ F3 : ∀I, Si = xiF + yiG+ ziH,U = xiTi + yiG

}
The convention continues as follows:

1. Prover processes A1 =
∑l−1

i=0 riF +
∑l−1

i=0 siG + tH and sends A1, A2,i =
riTi + siG to verifier.

2. Verifier challenges with c ∈ F.
3. Prover sends reactions t1,i, t2, t3.
4. Verifier checks:

A1+

l−1∑
i=0

ci+1Si =

l−1∑
i=0

t1,iF+t2G+t3H and

l−1∑
i=0

(A2,i+ci+1U) =

l−1∑
i=0

t1,iTi+t2G.

Proof. The convention is finished. Exceptional adequacy follows from extricating
values xi, yi, zi through tackling straight frameworks. The convention is excep-
tional legitimate verifier zero-information by mimicking arbitrary difficulties and
reactions.

B Parallel One-out-of-Many Demonstrating System

The framework demonstrates that Sl and Vl have a place with a set utilizing
network responsibilities:

{pponeoutofmany, A,B ∈ Gn, Si = {Si,1, . . . , Si,n}, V ∈ G, T ∈ G, f ∈ F}

The convention continues as:

1. Prover processes responsibilities A =
∑n

i=1 xiSi and sends them.
2. Verifier challenges with x.
3. Prover sends reactions and verifier actually takes a look at consistency.

The framework ensures trustworthiness and protection while forestalling fash-
ioned evidences.

C Payment Framework Security

Zerocash [3] laid out a security model for decentralized mysterious installment
(DAP) frameworks, where enemies can present vindictive coins, control exchange

https://ia.cr/2021/1036

Title Suppressed Due to Excessive Length 13

inputs, and create erratic exchanges. We demonstrate Flash’s security in a com-
parable model, where DAP is a tuple of calculations:

(Setup,CreateKeys,CreateAddress,CreateCoin,Mint, Identify,Recover,Spend,Verify)

The framework fulfills culmination, balance, non-pliability, and record vagary in
the event that no foe can break the properties.

The prophet ODAP reenacts the way of behaving of legit parties with a con-
nection point for executing the key capabilities, including CreateAddress, Mint,
and Spend. The foe collaborates with the prophet through questions, which in-
corporate making addresses, stamping coins, and spending them.

C.1 Completeness

Culmination guarantees that no foe can keep a legit client from spending a coin.
In the event that a client can recognize a coin with the approaching perspective
key, it can recuperate and spend it utilizing the full view key. This holds since,
supposing that an enemy controls a coin, it should be reflected in a past sub-
stantial exchange, and a fair client can’t create a spend exchange without the
right key.

C.2 Balance

Balance guarantees that an enemy have zero control over additional coins than
are printed or spent to it. The foe wins in the event that it controls more worth
than lawfully permitted. In the BAL game, the foe’s unspent coins in addition
to coins spent to it shouldn’t surpass the stamped or got coins.

Lemma 1. Given a record, two in any case substantial spend exchanges uncover
similar label provided that the coins’ sequential responsibilities are separated in
the structure:

S1 = Comm(x, y, β1), S2 = Comm(x, y, β2)

Proof. For two exchanges with label T , every exchange’s legitimate evidence
yields articulations and witness esteems that should match for the exchanges to
be substantial, prompting extricated sequential responsibilities S1 and S2 with
the equivalent x and y values, contrasting just in β1 and β2.

This outcome likewise applies to copy labels in a similar exchange.

C.3 Transaction Non-Malleability

Exchange non-pliability guarantees that no enemy can change a substantial ex-
change. For spend exchanges, an enemy A connects with a prophet ODAP and
yields an exchange tx′. On the off chance that tx is a substantial exchange from
ODAP, A wins if:

14 L.D

– tx′ ̸= tx,
– tx′ shares a tag with tx, and
– both tx′ and tx are substantial comparative with a similar record prefix.

A DAP conspire Π is TRNM-secure if:

Pr[TRNM(Π,A, λ) = 1] ≤ negl(λ).

C.4 Ledger Indistinguishability

Record vagary guarantees that no enemy A can recognize communications with
two records Lb and L1−b created by prophets ODAP

b and ODAP
1−b . A inquiries these

records and surmises a piece b′. A DAP conspire Π is LIND-secure if:

Pr[LIND(Π,A, λ) = 1]− 1

2
≤ negl(λ).

C.5 Payment Proofs

Installment confirmations guarantee:

– Confirmations can’t be replayed.
– Provers know the coin’s mystery key.
– Verifiers affirm the coin’s worth and notice.
– Beneficiaries recognize coins utilizing view keys.
– Foes can’t fashion verifications for various addresses.

Protocol: The prover ties coin information, setting, and keys into a Chaum-
Pedersen confirmationΠauth, remembered for the installment verificationΠpay =
(Coin, k, d,Q1, Q2, Πauth). Check affirms confirmation legitimacy, unscrambling
consistency, and restricting accuracy.

Security: Setting restricting forestalls replay assaults. Decoding approves
coin information, and verification imperatives guarantee foes can’t create sub-
stantial confirmations for various addresses.

	Efficient and Secure Threshold Signature Scheme for Decentralized Payment Systems with Enhanced Privacy
	Introduction
	Cryptographic Preliminaries
	Pedersen Responsibility Scheme
	Representation Demonstrating System
	Modified Chaum-Pedersen Demonstrating System
	Parallel One-out-of-Many Demonstrating System
	Authenticated Encryption Scheme
	Symmetric Encryption Scheme
	Range Demonstrating System

	Concepts and Algorithms
	Algorithm Constructions
	Setup
	CreateKeys
	CreateAddress
	CreateCoin
	Mint
	Identify
	Spend

	Multisignature Operations
	CreateKeys
	Precompute
	Spend

	View Keys and Installment Proofs
	Efficiency
	Modified Chaum-Pedersen Demonstrating System
	Parallel One-out-of-Many Demonstrating System
	Payment Framework Security
	Completeness
	Balance
	Transaction Non-Malleability
	Ledger Indistinguishability
	Payment Proofs

