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ABSTRACT Humanity has been affected by various diseases throughout history, which have killed many 

lives. One of the deadliest diseases that humanity has seen in the modern age and is still acknowledged to-

day is heart disease. Heart disease is on the rise as a result of the spread of unhealthy behaviors including 

smoking, overeating, and inactivity. This paper examined the machine learning (ML), deep learning (DL), 

and ensemble learning methods (ELMs) utilized in heart disease prediction research, as well as how they 

are being implemented. Searches were carried out on the Google Scholar online datasets. Sixty-five studies 

were included, with ML methods making up most of the studies with 28 (43%), and ELMs were the next 

single largest group with 24 (37%). DL methods were the smallest single group with 13 (20%). The Cleve-

land dataset was used in most studies. The result shows that over the last 5 years, there has been a growing 

desire of leveraging ML, and DL techniques to help further the understanding of heart disease prediction, 

whether it be by expanding the knowledge of the physiological changes or by improving the accuracies of 

models to help improve the treatments and disease management. 

INDEX TERMS Review, machine learning, deep learning, ensemble learning, heart disease prediction. 
 

I. INTRODUCTION 

Heart disease has been the main cause of death 

worldwide over the last decade. The world health organi-

zation (WHO) estimated that around 23.6 million people 

die largely from cardiovascular diseases each year, with 

coronary artery disease and brain stroke accounting for 82 

percent of these deaths. Such reasons include elevated 

blood pressure, high cholesterol, diabetes, obesity, smok-

ing, and a history of heart disease in the family[1]. 

Modern technology, including robotics, computers, 

and mobile phones, as well as the field of health care, 

nearly everywhere uses machine learning (ML) (i.e., dis-

ease diagnosis, safety). ML is becoming more and more 

popular in a wide range of sectors, including healthcare 

and disease diagnosis[2]. It is a method that aids the sys-

tem in picking up knowledge from earlier data samples. 

In many fields, ML is essential. It also demonstrates how 

it affects the prediction of heart disease[3].Deep Learning 

(DL) is a component of artificial intelligence (AI), which 

is also a subset of ML. Also, it is an increasingly common 

ML method [4]. Numerous more study fields can benefit 

from the use of DL. It is used to predict heart disease as 

well[3].  

The ensemble is a technique that is used to improve 

the classifier's accuracy. It is combining weak classifiers 

with strong learners to boost the effectiveness of the weak 

classifiers. So, merging different classifiers is getting 

improved performance over each classifier working 

alone[5]. 

This study highlights ML and DL methods that are 

used in heart disease prediction (HDP). It started by out-

lining several ML and DL methods that are used in com-

mon recent studies 
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This study is to provide insights to recent and future re-
searchers and practitioners regarding ML and DL-based 
heart disease prediction (MLDL-B-HDP) that will aid and 
enable them to choose the most appropriate and superior 
machine learning/deep learning methods. Additionally, it 
aims to identify potential studies related to the 
MLDL-B-HDP. In general, the scope of this study is to 
provide the proper explanation for the following ques-
tions:  
Which ML-DLHDP datasets are the most widely used? 
Which ML and DL approaches are presently used in health 
care to classify heart diseases?  
How is the model’s performance evaluated? Is that suffi-
cient?  
This study summarized different ML and DL methods 
utilized in HDP models. The remainder of the paper is 
structured as follows. In Section 2, the background and 
overview of ML and DL are discussed, whereas Section 3 
is showed the method used to select the studies. Section 4 
is presented the results obtained. Finally, Section 5 is 
concluded the article with a general conclusion. 

  
II. BASICS AND BACKGROUND 

ML is a branch of AI that uses numerical calculations and 
statistical computations to perform analysis. It was coined 
in 1959 by Arthur Samuel. It requires methods that help 
the data be processed and generate the final results. It is 
based on creating software programmers that gain 
knowledge from data and increase precision without being 
programmed, over time. ML methods can work with large 
datasets and make decisions and predictions. 

DL is a part of the broad area of AI as well as part of 
ML, in which suitable methods are augmented by layers 
of neurons of brain function and structure called artificial 
neural networks (ANNs). DL replicates the functions of 
the brain when analyzing and processing data to make 
decisions. It performs a deep analytical procedure to as-
siduously learn a dataset using hierarchical layers of ANN. 
DL Processing data uses a non-linear method to connect 
and associate all inputs to produce the optimal output. A 
neural network's first layer gathers input data, analyses it, 
and transmits the results to the second layer as output. 
Before making decisions and providing outcomes, the 
next layer of neurons in a deep neural network processes 
earlier data [6]. 

To improve accuracy, the ensemble methods com-
bine multiple classifiers into a single model. There are 
three types of ensembles learning methods. The first one 
is bagging that aggregates similar classifiers by the voting 
method. The second is "boosting," which is similar to 
"bagging," but new models are influenced by the results 
of previous models. The third is stacking. It is an ad-
vanced ensemble method that is aggregated different clas-
sifiers to build the model. 

 

Machine Learning 

Algorithms 

 Decision Tree (DT) 

 Support Vector Machine (SVM) 

 K-Nearest Neighbor (KNN) 

 Naïve Bayes (NB) 

 Logistic Regression (LR) 

 Artificial neural network (ANN) 

Deep Learning 

Algorithms 

 

 Multi-layer Perceptron (MLP) 

 Convolutional Neural Network (CNN) 

 Recurrent neural network (RNN) 

 Generative Adversarial Networks (GANs) 

 

Figure 1. Most ML and DL algorithms used in HDP. 

A. MACHINE LEARNING ALGORITHMS  

This section presents the most ML methods that are used 
in HDP. 

 

1) DECISION TREE 

Decision Tree (DT) is a supervised method for machine 
learning. It is employed to find continuous solutions to 
classification and regression issues. dividing data based 
on specific criteria The distribution of the data resembles 
a tree. Decisions are made in the leaves, which are sepa-
rated into nodes. This process iterates across the features, 
and the leaf nodes deliver the final result. The classifica-
tion tree's decision variable is categorical, but the regres-
sion tree's decision variable is continuous (the result is yes 
or no) [7]. 
 

2) SUPPORT VECTOR MACHINE 

Both classification and regression issues can be solved 
with Support Vector Machine (SVM). It classifies data 
into two classes over a hyperplane. Keep comparable data 
of one type on one side and comparable data of a different 
type on the other side of the hyperplane. In order to re-
duce misclassification, it aims to maximize the separation 
between each class's two closest data points and the hy-
perplane. The hyperplane should define what the deci-
sion's borders are. In order to divide a group of objects 
from various classes, you need a decision plan [8]. 

  SVM can be utilized for classification. A hyper-
plane can divide disease classes in the case of the HDP 
such that one side of the edge has heart disease while the 
other does not. Linear and nonlinear SVM are additional 
divisions of SVM. A nonlinear SVM is used when the 
data cannot be linearly separated using a line, as opposed 
to a linear SVM, which can do so. A nonlinear SVM ker-
nel function is used because the data may be complex and 
cannot be separated using a linear SVM [9].                                                                                            
  

3)  K-NEAREST NEIGHBOR 

K-Nearest Neighbor (KNN) is a method for super-
vised learning that may be applied to boz th regression 
and classification issues. The k nearest data points in the 
training set are found if the KNN is missing a target value 
for a given data point, and the estimated average value of 
collected data points is calculated.   The mean of the k 
labels is returned by regression, whereas the mean of the k 
labels is either assigned or returned by classification. 
When prior knowledge of the data is unavailable, KNN 
is the default classification method employed. The closest 

https://en.wikipedia.org/wiki/Arthur_Samuel
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data points can be determined using the Manhattan dis-
tance and Euclidean distance, two distance measures. 
Even with noisy and large amounts of data, it can produce 
better outcomes and forecasts [9]. 

 

4) NAÏVE BAYES 

Naïve Bayes (NB) is a probabilistic method that 

uses the Bayes theorem in application and makes 

strong (naive) assumptions about the independence 

of feature pairs. Simple Bayesian models are partic-

ularly useful in medicine for diagnosing heart dis-

ease patients because they are easy to build without 

complex iterative parameter estimation. Although 

being simple, naive Bayesian classifiers are widely 

used because they often perform surprisingly well 

and outperform more complex classification meth-

ods.   The posterior probability can be calculated 

according to the Bayes theorem: P(X|Y) from P(X), 

P(Y), and P(Y|X). The Naive Bayes assumes that the 

influence of the value of a predictor variable (X) on a 

particular class (Y) is independent of the values of 

other predictor variables. This assumption is called 

class independence. 

      
          ⁄  

    
⁄                                             

 P(X|Y) is the posterior likelihood of the 

(target) class given the predictor (attribute).  

 P(X) is the prior likelihood of class. 

 P(Y|X) is the probability which is the 

probability of the predictor given class.  

 P(Y) is the prior likelihood of the predic-

tor 

 Where X and Y are two events. This method 

works well with categorical data, but poorly if the 

training dataset has numeric data [10]. 

 

5) LOGISTIC REGRESSION 

Both classification and regression problems are re-

solved using logistic regression (LR). To predict the 

result, input values may be linearly combined with a 

logistic or sigmoid function and coefficient values. 

Given the value of (0 or 1) of the input variable, it 

provides a binomial result, indicating the probability 

that the event will occur. There are different types of 

logistic regression results, like binomial, ordinal 

(classifications with ordering), and polynomial 

(classifications without ordering). This model is 

simple to use and can make accurate predictions. To 

predict the values of continuous variables, linear 

regression is used [7]. 

  

6) Artificial Neural Networks (ANNs) 

Artificial neural network (ANN) is a field of ma-

chine learning in neural networks. ANNs are similar 

to that of Human brain function. The cell is a simu-

lation of a human neuron, it is Similar to how a cell 

processes information and responds. ANN learns 

from data, categorizes it, and anticipates an output. 

It is a nonlinear statistical architecture for discover-

ing complex problem solutions. It contains three 

layers: an input layer a hidden layer, and an output 

layer with many nodes that resemble neurons in the 

human brain. The nodes of the ANN act as inputs 

for the input layer as neurons converse with one 

another. Data from the outside world is transferred 

to the concealed layer through the input layer. Here, 

the hidden layer analyses the data and makes some 

computations to search for patterns. Pass the classi-

fied data to the output layer after processing. Input 

functions are converted into output functions using 

activation functions. There are various varieties, in-

cluding logistic, tanh, sigmoid, linear, and more. 

These days, ANNs are widely employed in different 

industries, including health, image identification, 

speech recognition, and face recognition [9].  

 

B.  DEEP LEARNING ALGORITHMS  

This section presents a review of the most commonly used 
DL algorithms in HDP. 

 

1) MULTI-LAYER PERCEPTRON  

Multi-layer perceptron (MLP) is a form of supervised 
learning approach and an ANN. This is also referred to as 
deep learning's fundamental architecture or deep neural 
network (DNN).  
  A basic MLP is made up of just three layers: an input 
layer that accepts input data, and an output layer that de-
cides what to do with the input signal. Between these two 
there may be one or more hidden layers that serve as the 
network's processing units. MLPs’ output is calculated 
using a different of activation functions, including Tanh, 
Sigmoid, and Softmax, rectified linear unit (ReLU), and 
numerous optimization techniques, including limited 
memory BFGS (L-BFGS), adaptive moment estimation 
(Adam), and stochastic gradient descent (SGD) are used 
throughout the training phase. MLP needs tuning many 
hyperparameters, such as hidden layers, neurons, and 
several iterations, so complex models can be solved 
computationally intensively[11]. 

 

2) CONVOLUTIONAL NEURAL NETWORK  

Convolutional Neural Network (CNN) is a well-known 
supervised DL architecture. It learns directly from inputs 
without needing to extract features. A CNN with numer-
ous convolutional and pooling layers is demonstrated in 
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Figure 2. As a result, CNNs enhance the architecture of 
conventional ANNs such as controlled MLP networks.  
Each CNN layer considers optimal parameters to produce 
meaningful output while reducing the complexity of the 
model. CNNs also use a dropout layer that can address the 
overfitting problem that can occur in traditional networks. 
The ability to automatically detect key features from in-
puts without requiring human interaction makes them 
more effective than traditional networks. In the visual 
geometry group (AlexNet, Xception, ResNet, etc.), de-
pending on their learning capacity, different CNN varia-
tions can be used in various application fields[11]. 

 

3) RECURRENT NEURAL NETWORK 

A recurrent neural network (RNN) is one more 

common neural network that processes sequential or 

time-series data. It provides the current stage with 

the output of a previous stage as input. Similarly, to 

CNNs and feedforward, recurrent networks learn from 

their training inputs. However, they have a different 

memory. For that, the information from previous inputs 

can be used to influence current inputs and outputs. In 

contrast to a normal DNN, which assumes that the input 

and output are independent of one another, in RNN, the 

output is dependent on the prior element in the sequence. 

Standard recurrent networks, on the other hand, contain 

vanishing gradients, which makes it challenging to train 

extended data sequences. A Feed-Forward Neural Net-

work can be transformed into RNN. A single layer of 

RNNs is created by compressing the nodes from the neu-

ral network's input, hidden, and output layers. A, B, and C 

are the parameters of the RNN network. 

Below, are some common variants of recurrent net-

works that are minimally problematic and work well in 

many domains of real-world application:  
 The LSTM is a well-liked RNN architecture that employs 
specialized units to address the vanishing gradient issue. In 
LSTM devices, memory cells have a long-term data storage 
capacity. Three gates control how information enters and exit 
the cell. For example, the "forget gate" determines what infor-
mation is preserved from the cell in the previous state and re-
moves information that is no longer needed.  The "input gate" 
determines what information is put into the cell state. The "out-
put gate" determines and controls the output. LSTM networks 
are considered one of the most successful RNNs for solving the 
problem of training recurrent networks. 

 Another popular version of recurrent networks called 
GRU uses gating techniques to regulate and manage the infor-
mation flow between neural network cells. GRUs are similar to 
LSTMs but have reset and update gates but no output gates and 
fewer parameters. GRU and LSTM vary primarily in that GRU 
only has two gates (the reset and update gates), while LSTM has 
three gates (input, forget, and output gates). The GRU's structure 
enables it to record dependencies on lengthy data sequences in 
an adaptive manner without losing information from previous 
segments of the sequence. 

 Recurrent networks have the fundamental characteristic 
of having at least one feedback link that permits looping activa-

tions. As a result, the network can carry out temporal processing 
and sequence learning tasks including sequence duplication or 
detection, temporal association or prediction, etc. Recurrent 
networks have certain common applications in speech recogni-
tion, machine translation, natural language processing, predic-
tion difficulties, and text summarization[11]. 

 

4) GENERATIVE ADVERSARIAL NETWORK  

In order to generate new believable patterns on de-

mand, generative modeling uses a form of neural 

network architecture called generative adversarial 

networks (GANs). By automatically detecting regu-

larities and patterns in the incoming data, the model 

can be utilized to generate new instances from the 

original dataset.  

   GAN contains two neural networks. A discrimina-

tor D forecasts the possibility that successive sam-

ples will be produced from the real data instead of 

the created data that was produced using the gener-

ator. A generator G generates new data with attrib-

utes comparable to the original data. As a result, 

both generators and discriminators in GAN model-

ing are trained to compete with one another. The 

deployment of GAN networks is designed for unsu-

pervised learning tasks.   

   By producing more realistic data, the generator 

may attempt to deceive and perplex the discrimina-

tor. Healthcare, data augmentation, picture analysis, 

video generation, audio generation, traffic control, 

pandemics, cyber security, etc. are just a few of the 

fast-expanding application areas for GAN networks. 

In general, GANs have become a significant auton-

omous data augmentation field and a solution to 

issues that call for generative approaches [11]. 

 
III. METHOD 

A. SEARCH STRATEGY AND SELECTION 
PROCESS 

In this study, four key search terms (heart disease, 

machine learning, ensemble learning) across reputa-

ble 5-9 journals like IEEE, ACM, Springer, Sci-

enceDirect, and Emerald. To focus on more recent 

advancements in the field, it was only applicable to 

articles from 2018 to 2023. There were 100 results in 

total for original articles with keywords mentioned 

above, after reviewing articles, case reports and me-

ta-data analysis articles were filtered out. Looking 

into the content of each publication, it was identified 

that some of the results were not related to heart 

diseases and/or machine learning. In the end, 65 

publications are relevant to this study. These publi-

cations were elected to subcategorize under the re-

sults section concerning the disease. It aims to diag-
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nose to provide a more comprehensive comparison and a 
more coherent reading experience for readers. Figure  
shows a flowchart detailing the process of how relevant 
studies are obtained, classified, and explored. Table 1 
outlines the criteria used to define the search term and 
where, within the manuscript, each term focuses.  

Table 1. Criteria used to build the literature search. 

Criteria Term Location 

A 

“Machine 
Learning” OR 

"Deep 

Learning" OR 
"Ensemble 

Learning" 

Anywhere within the manuscript 

B 
Heart OR 

Cardiac Disease 
Anywhere within the manuscript 

 
1) SEARCH RESULT 

The search process is detailed in Figure  based on the 
search criteria, 97 total studies were found on the scien-
tific search engines. The unique studies were subsequent-
ly extracted, which left a total of 97 studies.  

 
Figure 2. Flow chart of studies selection. 

Among the 97 studies that remained, 10 studies were 
excluded due to issues with accessing the full manuscript, 
leaving 87 studies to be included for full-text readings and 
to form the dataset for this study. However, during the 
full-text readings, a further 18 studies were excluded. Af-
ter all the exclusions had been applied, this left a final 
total of 65 studies that were considered for this study [3], 
[4], [12]- [13]. 

 
IV. RESULTS 

Of the 65 studies, several different approaches were taken. 
The studies were clustered into three subgroups of meth-
ods: ML, DL, and ELMs. Each study was then assigned to 
one of these three groups using the criteria outlined in 
Table 1. Machine learning methods made up most of the 
studies with 28 (43%) [3] [12]-[14] being assigned to this 

group. ELMs were the next single largest group with 

24 (37%) studies [15] - [13]. Deep learning methods 

were the smallest single group with 13 (20%) studies 

[4], [16] - [17] 

A. HEART DISEASE WITH MACHNE LEARNING 
METHODS 

The studies within this group are focused on using SVM, 
KNN, DT, RF, NB, LR, ANN, and J48 
methods. Most of the 28 studies used more than the 
methods then compared between them as [12], [18]- [19]- 
[20], [3], [21]- [22], [14]. Two studies that are used one 
method [23], [24].  
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 summarizes the studies that used machine learning 
methods. 

 

 

 

Table 2. Summary of ML methods used in heart disease prediction (HDP).

 
Year 

Ref Dataset Methods Best Accuracy/Results Future Work/Limitation 

2018 [12] Cleveland DT, J48, LMT, RF, NB, KNN, & SVM NB is the best classifier 
Use combinational 

models. 

2018 [23] Cleveland & Statlog ANN Best of PCA (94.7%, 97.7%)   

2018 [18] Cleveland & Statlog RF, DT, & NB RF with perfect results Apply genetic method. 

2018 [25] Framingham LR, RF, KNN, SVM & DT LR (88.86%)  

2018 [26] Cleveland & Statlog 
Cloud 4-Tier Arch (ANN, SVM, RF, 

NB, & DT) 
ANN (86%)  

2019 [19] 

Combined (Statlog, 

Switzerland, Hungarian, 

V.A. Medical)   

NN, NN, SVM, NB & RF 

 
90–95 %  

2019 [27] Cleveland 
Hybrid RF with a Linear Model 

(HRFLM) 
88.7%   

2019 [20] Cleveland 
KNN, SVM, NB, RF, MLP, ANN 

optimized by PSO & ACO 
KNN (99.65%), RF (99.6%)  

2019 [28] Cleveland KNN with SBS feature selection 90%  

2019 [29] Cleveland & IOT Cloud and IoT model using a set of J48 classifiers is the best  
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Sensors classifiers J48, LR, MLP & SVM 

2019 [3] Kaggle 

LR, KNN, AdaBoost, DT, NB, RF, 

SVM, Extra Tree Classifier (ETC) & 

Gradient Boosting 

The best: SVM, RF, ETC  

2020 [21] Cleveland 
LR, KNN, RF, DT & SVM with grid 

search for tunning hyperparameter 
KNN with grid search (91.80%) 

Feature selection 

methods with different 

techniques. 

2020 [30] Cleveland 
RF, NB, SVM, DT, Hoeffding Trees & 

LMT 
RF(95.08%) 

Add more attributes and 

analyze with proposed 

models. 

2020 [31] Cleveland SVM, NN, DT, and LR KNN is the best  

2020 [32] Cleveland KNN, NB, DT, and RF KNN (90.78%) 
Incorporating other data 

mining techniques. 

2020 [33] Cleveland 
LR, NB, SVM, KNN, DT, RF, & 

XGBoost 
RF (86.89%)  

2020 [34] Cleveland SVM, RF, NB, DT with Weka RF (99%)  

2021 [35] Framingham 

(RF, LR, SVM) using Linear Kernel 

Function; SVM (Radial Basis Kernel 

Function, NB) 

RF (84.81%)  

2021 [36] Cleveland 
(hybrid GA and RFE) & (NB, SVM, 

LR, RF, AdaBoost) 
RF (86.60%) 

Use ACO & PSO as 

feature selection 

methods. 

2021 [37] Cleveland KNN, LR, RF KNN (88.52%)  

2021 [38] Svetlana Ulianova 2019 KNN, RF, DT, and SVM NB is the best  

2021 [39] Kaggle KNN, RF, and DT RF (100%)  

2021 [40] Cleveland 
ANN, DT, NB, RF, LR, SVM & XG 

Boost 
RF (95.08%)  

2021 [41] 40 thousand ECGs 
XGBoost for training, Optuna for tuning 

parameters 
F1 Scores (0.93 – 0.99)  

2021 [42] Data on people’s tests NN, SVM, & KNN NN (93%) 

Feature selection 

methods, increase the 

dataset size. 

2022 [22] Cleveland KNN, DT, LR, NB, & SVM LR (92.30%) Furthe analysis methods. 

2022 [24] Cleveland & Statlog  
SVM for classification and χ2 statistical 

optimum for feature selection 
(89.47, 89.7%)  

2022 [14] 

Cleveland, Hungarian, 

Switzerland, & Long 

Beach  

RF, DT, AB, & KNN KNN (100%, 97.82%)  

2023 [43] 

Cleveland  and 95% for 

the IEEE Dataport 

dataset 

soft voting classifier combining all ML 

method 
 93.44% 

- limited amount of 

patient data 

- using medical IoT 

devices and sensors for 

collection the clinical 

parameters  
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Year 

 
Ref Dataset 

Ensemble 

Learning 

Methods (ELMs) 

Best 

Accuracy/Results 
Future Work/Limitation 

2018 [15] Cleveland 
KNN, NB, DT, 

Majority Voting 
90% accuracy  

2018 [59] 
Cleveland & 

Hungarian 

RF trees, SVM, 

NB, NN, LR 

ELM is a superior 

approach 
Use another dataset. 

2018 [60] Cleveland NB, LR, NN 91.26% accuracy 
Use other data mining algorithms with greater 

medical data. 

Year Ref Dataset  Methods Best Accuracy/Results Future Work/Limitation 

2018 [16] Cleveland Fve layer DNN architecture 99% accuracy  

2018 [45] Cleveland  DNN 93.51% accuracy 
Use LSTM, RNN, and 

CNN. 

2019 [46] Cleveland χ2 statistical model & DNN 93.33% accuracy 
Use GA with ANN & 
DNN. 

2019 [44] Multiple datasets DNN 87.64% accuracy Use other DL networks. 

2019 [47] 
Cleveland & 
Physionet 

CNN 97%  

2019 [48] Cleveland 
MLPNN with 

Back-propagation 
94% accuracy  

2020 [49] Not mention  DLMNN 92% accuracy  

2020 [50] Cleveland CNN - GRU 94% accuracy  

2020 [4] Cleveland 
DNN using Talos 
optimization 

90.78% accuracy  

2021 [51] MIMIC-II 
RNN, LSTM, GRU, & 

BI-LSTM 

GRU with 3 layers is the 

best  
 

2021 [52] Kaggle Enhanced RNN 91% accuracy  

2021 [53] Cleveland LASSO & CNN  97%  

2022 [17] 
Cleveland & 
Hungarian  

Fuzzy inference system with 
Bi-LSTM 

98.85% accuracy  

2023 [54] 

Cleveland, 
Hungarian, Long 

Beach and 

Switzerland 

CNN 83% 

Test CNN model on 
structured and 

unstructured data to 

improve it 

2023 [55] 

: Cleveland, 
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Switzerland, 
Long Beach, 

stalog 
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2018 [61] SPECT Hybrid ELMs 96% accuracy Extending Hybrid ELMs for other diseases. 

2019 [62] Kaggle 

Boosting-based 

ELMs (AdaBoost, 

GBM, XGBoost, 

LGBM, CatBoost) 

Tuning 

parameters 

improved  the 

algorithms  

 

2019 [63] 
Medical 

database 

Ensemble DT 

with GA 
85.37% accuracy Use hybrid generic intelligent systems. 

2019 [64] Cleveland 

Voting ELMs 

(LR, RF, KNN & 

SGD) 

90% accuracy  

2019 [5] Cleveland 

ELMs for  NB, 

Bayes Net, C4.5, 

Multilayer 

Perceptron, and 

PART 

Increase of 7% 

accuracy 
 

2019 [65] Statlog 
Voting ELMs 

(LR, NB & MLP) 
88.88%  

2019 [56] Kaggle 

Bagging, 

Boosting, RSM, 

RUS Boos 

Bagging (99.3%)  

2020 [50] 

Sensor data & 

electronic 

medical 

records 

(EMRs) 

Using ensemble 

DL and feature 

fusion 

98.5% 

 
 

2020 [66] 
Cleveland & 

Framingham 
CART & WAE 

Cleveland (93%), 

Framingham 

(91%) 

 

2020 [67] Cleveland 

ELMs (RF, KNN, 

SVM, LSTM, 

GRU) 

85.71%  

0202 [68] 

Medica Norte 

Hospital in 

Mexico 

CNN-MLP And 

LSTM, GRU, 

BiLSTM, BiGRU 

91%-96% Use other NN such as GAN or RNN. 

2020 [69]  Cleveland 

Hybrid gradient 

boosting DT with 

LR 

91.8%;  

2020 [57] Cleveland 

AdaBoost, 

Bagging & 

Stacking 

AdaBoost is the 

best 

Apply genetic method for AdaBoost parameters 

fine-tuning. 

2020 [70] Cleveland 
ANN, KNN, SVM 

& majority voting 

Majority Voting 

(61.16%  

multiclass class.), 
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(87.37% binary 

class.) 

2021 [71] 

Tunisian 

biotechnology 

center & 

Cleveland 

ELMs (SVM, 

KNN DT C4.5, 

Bagging and 

Adaptive 

boosting) 

ELMs improved 

performance 
 

2021 [72] Kaggle 

LR, CART, LDA, 

KNN, SVM, GB, 

and ELMs 

86.32%   

2021 [73] 
Statlog, 

SPECTF  

a hybrid ELM 

with GA-LDA 
93.65%  Use (PSO, ACO, Firefly). 

2021 [74] Cleveland 
Combination of 

ML and DL 
94.2%  Increase dataset size with other techniques. 

2022 [75] Kaggle 

Ensemble Stacked 

ML (XGB, KNN, 

DT) and DL 

(DNN, KDNN) 

88.70%    

2022 [58] Kaggle 

ML with 

(Majority Voting, 

Stacking, 

Bagging) 

98.38%   

 

 

2022 [13] 
Cleveland & 

others 

CNN-LSTM and 

CNN-GRU 
98.41%   

2023 [76] 

 Cleveland  

and a large 

public dataset 

CNN-LSTM 

model 

97.75% with 

Cleveland 

98.86% with arge 

dataset 

- lack of comprehensive testing on real-world 
datasets 

- lack of deep ensemble learning methods 
- In the future, generalize the system 

      

 

 
V. DISCUSSION 

 According to the papers covered in this study, 

there is a clear intent to use ML and DL in the field 

of heart disease prediction research. This is demon-

strated by 65 papers that either use ML, DL, or en-

semble approaches to build high-accuracy models, 

evaluate how ML or DL are being used, or compare 

them [29] - [38], [40], [22], [14], [51], [59], [56], [57], 

[58]. Most studies applied ML and DL methods to 

classify and detect heart disease at early stages.   

   Most of the studies used UCI ML Repository 

especially the Cleveland dataset with 303 records 

and 14 features. The results obtained depend on the 

dataset  [24], [66], [13]. As an average of accuracies, 

the studies that applied DL methods present higher 

accuracy than studies that applied ML methods. 

Figure 2 shows the average accuracies of ML and DL 

for the studies. 
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Figure 2. The average accuracy of the studies. 

Also ensemble models provide better results 

and improve the performance than individual mod-

els [59], [64], [71]. 
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