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Abstract

We present the results of the ARCH1 2021 friendly competition for formal verification
of continuous and hybrid systems with linear continuous dynamics. In its fifth edition,
four tools have been applied to solve nine different benchmark problems in the category
for linear continuous dynamics (in alphabetical order): CORA, HyDRA, JuliaReach, and
SpaceEx. This report is a snapshot of the current landscape of tools and the types of
benchmarks they are particularly suited for. Due to the diversity of problems, we are not
ranking tools, yet the presented results provide one of the most complete assessments of
tools for the safety verification of continuous and hybrid systems with linear continuous
dynamics up to this date.

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH

G. Frehse and M. Althoff (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 1–31

http://cps-vo.org/group/ARCH


ARCH-COMP21 Linear Dynamics Althoff et al.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for continuous and
hybrid systems with linear continuous dynamics aims at providing a landscape of the cur-
rent capabilities of verification tools. We would like to stress that each tool has unique
strengths—not all of the specificities can be highlighted within a single report. To reach a
consensus in what benchmarks are used, some compromises had to be made so that some
tools may benefit more from the presented choice than others.

We consider the verification of hybrid systems (i.e., mixed discrete/continuous systems) with
linear continuous dynamics

ẋ(t) = Ax(t) +Bu(t),

where A ∈ Rn×n, x ∈ Rn, B ∈ Rn×m, and u ∈ Rm. For all results reported by each participant,
we have run an independent repeatability evaluation. To establish further trustworthiness
of the results, the code with which the results have been obtained is publicly available at
gitlab.com/goranf/ARCH-COMP. The selection of the benchmarks has been conducted within
the forum of the ARCH website (cps-vo.org/group/ARCH), which is visible for registered users
and registration is open to anybody. All tools presented in this report use some form of
reachability analysis. This, however, is not a constraint set by the organizers of the friendly
competition. We hope to encourage further tool developers to showcase their results in future
editions. All tools are run on a AWS g4dn.4xlarge machine with 16 Xeon vCPUs and 64
GB RAM. Although we use the same machine, one still has to factor in the efficiency of the
programming language of the tools.

A novelty compared to last year is that all models are provided in SpaceEx format on our
central repository. By this means, we ensure that all tools use the same model. Once all tools
can automatically import SpaceEx models, it will be much easier to handle a larger set of
benchmarks.

2 Participating Tools

The tools participating in the category Continuous and Hybrid Systems with Linear Continuous
Dynamics are subsequently introduced in alphabetical order.

CORA (Matthias Althoff, Mark Wetzlinger) The tool COntinuous Reachability Analyzer
(CORA) [2, 6, 7, 4] realizes techniques for reachability analysis with a special focus on de-
veloping scalable solutions for verifying hybrid systems with nonlinear continuous dynamics
and/or nonlinear differential-algebraic equations. A further focus is on considering uncertain
parameters and system inputs. Due to the modular design of CORA, much functionality can be
used for other purposes that require resource-efficient representations of multi-dimensional sets
and operations on them. CORA is implemented as an object-oriented MATLAB code. CORA
is available at cora.in.tum.de.
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HyDRA (Stefan Schupp, Erika Ábrahám) The Hybrid systems Dynamic Reachability
Analysis (HyDRA) tool implements flow-pipe construction based reachability analysis for
linear hybrid automata. The tool is built on top of HyPro [34] available at ths.rwth-
aachen.de/research/projects/hypro/, a C++ library for reachability analysis. HyPro provides
different implementations of set representations tailored for reachability analysis, such as boxes,
convex polyhedra, support functions, or zonotopes, all sharing a common interface. This in-
terface allows one to easily exchange the utilized set representation in HyDRA. We use this to
extend state-of-the art reachability analysis by CEGAR-like parameter refinement loops, which
(among other parameters) allow us to vary the used set representation.

JuliaReach (Marcelo Forets, Daniel Freire, Christian Schilling) JuliaReach is a software suite
for reachability computations of dynamical systems [15], available at http://juliareach.com/.
It is written in Julia, a modern high-level language for scientific computing. For the set com-
putations we use the LazySets library [33], which is also part of JuliaReach. JuliaReach can
analyze systems in either continuous-time or discrete-time semantics. For some of the models
we use our custom SX parser for parsing SX (SpaceEx format) model files, and otherwise we
create the models in Julia. Compared to last year we have continued to improve algorithmic
aspects in the core component library ReachabilityAnalysis. In this competition we use the fol-
lowing algorithms: BFFPSV18 (based on support functions on low-dimensional subspaces [16]),
GLGM06 (based on zonotopes [27]), ASB07 (based on zonotopes for parametric systems [11]), and
LGG09 (based on support functions [30]). These algorithms can be combined with different ap-
proximation models, such as forward and correction hull, adapted from [22] and [1], respectively.
For hybrid systems with time-triggered transitions, we use the algorithm from [20].

SpaceEx (Goran Frehse) SpaceEx is a tool for computing reachability of hybrid systems with
complex, high-dimensional dynamics [22, 23, 21]. It can handle hybrid automata whose contin-
uous and jump dynamics are piecewise affine with nondeterministic inputs. Its input language
facilitates the construction of complex models from automata components that can be com-
bined to networks and parameterized to construct new components. The analysis engine of
SpaceEx combines explicit set representations (polyhedra), implicit set representations (sup-
port functions) and linear programming to achieve a maximum of scalability while maintaining
high accuracy. It constructs an overapproximation of the reachable states in the form of tem-
plate polyhedra. Template polyhedra are polyhedra whose faces are oriented according to a
user-provided set of directions (template directions). A cover of the continuous trajectories is
obtained by time-discretization with an adaptive time-step algorithm. The algorithm ensures
that the approximation error in each template direction remains below a given value. SpaceEx
is available at http://spaceex.imag.fr.

3 Verification of Benchmarks

For the 2021 edition, we have decided to keep all benchmarks from our 2020 friendly competition
[5] and have added the clamped beam benchmark.

Special Features We briefly list the special features of each benchmark:
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• Heat 3D benchmark from [13]: This is a purely continuous benchmark resulting from
a spatial discretization of a heat partial differential equation in three dimensions. The
system can be scaled from a 5× 5× 5 mesh (125 dimensions) to a 100× 100× 100 mesh
(one million dimensions), each variation being roughly an order of magnitude apart.

• Clamped beam benchmark from [31, Sec. 4.2]: This purely continuous benchmark models
a spatially discretized beam clamped on one end and pulled on the other end yielding
interesting oscillations. The system dimension ranges from 200 to 2000 depending on the
number of nodes used for the discretization. A challenge of this benchmark is that it has
very little damping.

• Space station benchmark from [37]: This is a purely continuous benchmark of medium
size with 270 state variables and three inputs.

• Spacecraft rendezvous benchmark from [17]: This benchmark has hybrid dynamics and is a
linearization of a benchmark in the other ARCH-COMP category Continuous and Hybrid
Systems with Nonlinear Dynamics. Consequently, the reader can observe the difference in
computation time and verification results between the linearized version and the original
dynamics.

• Powertrain benchmark from [8, Sec. 6]: This is a hybrid system for which one can select
the number of continuous state variables and the size of the initial set. Up to 51 continuous
state variables are considered.

• Building benchmark from [37, No. 2]: A purely continuous linear system with a small
number of continuous state variables; the benchmark does not only have safety properties,
but also properties that should be violated to check whether the reachable sets contain
certain states.

• Platooning benchmark from [14]: A rather small number of continuous state variables is
considered, but one can arbitrarily switch between two discrete states: a normal operation
mode and a communication-failure mode.

• Gearbox benchmark from [18]: This benchmark has the smallest number of continuous
state variables, but the reachable set does not converge to a steady state and the reachable
set for one point in time might intersect multiple guards at once.

• Brake benchmark from [36]: This hybrid benchmark has a time-triggered discrete transi-
tion that has to be taken 1,001 times.

Types of Inputs Generally, we distinguish between three types of inputs:

1. Fixed inputs, where u(t) is precisely known. In some cases, u(t) = const as in the gearbox
benchmark.

2. Uncertain but constant inputs, where u(t) ∈ U ⊂ Rm is uncertain within a set U , but
each uncertain input is constant over time: u(t) = const.

3. Uncertain, time-varying inputs u(t) ∈ U ⊂ Rm where u(t) 6= const. Those systems do
not converge to a steady state solution and consider uncertain inputs of all frequencies.
For tools that cannot consider arbitrarily varying inputs, we have stated that changes in
inputs are only considered at fixed points in time.
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Different Paths to Success When tools use a fundamentally different way of solving a
benchmark problem, we add further explanations.

Computation Time The computation times specified in this report include the computation
time of the reachable set and the time needed for the verification of the specifications.

3.1 Heat3D

3.1.1 Model

Using a mesh, the Heat3D benchmark is a spatially-discretized partial differential equation
(PDE) for heat transfer in three dimensions, resulting in ordinary differential equations (ODEs),
where each variable represents a mesh point. Depending on the granularity of the discretization,
one can adjust the number of variables. This system has no switching or inputs and serves to
evaluate the scalability with respect to the number of system dimensions. It is an academic
example, although modifications, such as external inputs or more complicated specifications,
can be added in the future. This benchmark was used in [13] and is based on a 2D version
originally described and evaluated in [29, 28].

All of the sides of the considered heated block are insulated, except the x = 1 edge, causing
heat exchange with the ambient environment with a heat exchange constant of 0.5. A heated
initial region is present in the region, where x ∈ [0.0, 0.4], y ∈ [0.0, 0.2], and z ∈ [0.0, 0.1].
The entire initial heated region is the same temperature, which is nondeterministic and chosen
in the range 0.9 to 1.1, with the remaining material initially at temperature 0.0. The system
dynamics is given by the heat equation PDE ut = α2(uxx + uyy + uzz), where α = 0.01 is the
diffusivity of the material.

A linear model of the system is obtained using the semi-finite difference method, discretizing
the block with an m×m×m grid. This results in an m3-dimensional linear system describing
the evolution of the temperature at each mesh point.

Due to the initially heated region, we expect the temperature at the center of the block
to first increase, and then decrease due to the heat loss along the x = 1 edge. Further, the
discretization error increases for smaller m motivating the higher-dimensional versions of the
benchmark. We suggest a time bound of T = 40 and a step size of 0.02 (2000 steps).

3.1.2 Specifications

The goal is to find the maximum temperature reached at the center of a 1× 1× 1 block, where
one edge of the block is initially heated. This can be converted to a safety verification problem
by checking that Tmax is reachable but Tmax + δ is not, for some small δ like 10−4.

There are five suggested sizes, roughly each one an order of magnitude apart in terms of the
number of dimensions. The higher-dimensional versions usually prevent explicitly representing
the dynamics as a dense matrix in memory. Storing a million by million dense matrix requires
a trillion numbers, which at 8 bytes per double-precision number would require eight terabytes
of storage.

HEAT01 5 × 5 × 5 (125 dimensions). Note: the initial set is modified to be heated when
z ∈ [0.0, 0.2] (single mesh point), since that is the best we can do with this granularity.
Tmax: 0.10369 at time 9.44.

HEAT02 10× 10× 10 (1000 dimensions). Tmax: 0.02966 at time 25.5.
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HEAT03 20× 20× 20 (8000 dimensions). Tmax: 0.01716 at time 22.62.

HEAT04 50× 50× 50 (125,000 dimensions). Tmax: 0.01161 at time 18.88.

HEAT05 100× 100× 100 (1,000,000 dimensions). Tmax: 0.01005 at time 17.5.

3.1.3 Results

Plots for the 5× 5× 5 case are shown in Figure 1. Results are shown in Table 1.

Note CORA CORA applies the reachability algorithm in [24] with a time step size of 0.02
for the benchmark instance HEAT01. For the higher-dimensional benchmark instances we
compute the reachable set using the Krylov-subspace-based reachability algorithm in [3] using
a time step size of 0.05 for HEAT02 and 0.005 for HEAT03.

Note HyDRA We use a time step size of 0.03 for the instance HEAT01 and a time step
size of 0.014 for the instance HEAT02. Both models are verified using a recently added, more
efficient implementation of support functions.

Note JuliaReach For HEAT03 and HEAT04 we use an implementation of LGG09 that lazily
computes the matrix exponential using the Lanczos algorithm [32], with chosen Krylov subspace
dimension of 94 and 211, respectively.

Note SpaceEx SpaceEx computes the matrix exponential with a Padé approximation on
dense matrices. It therefore does not scale well to more than ≈500 variables.

Table 1: Computation Times for the Heat3D Benchmark in [s].

tool HEAT01 HEAT02 HEAT03 HEAT04 HEAT05 language

CORA 2.2 9.3 289 − − MATLAB

HyDRA 13.2 160 − − − C++

JuliaReach 0.13 32 − − − Julia

SpaceEx 4.2 − − − − C++

discrete-time tools

JuliaReach 0.023 1.2 137 5273 − Julia

3.2 Clamped Beam

3.2.1 Model

Similarly to the Heat3D benchmark from above, the Clamped Beam benchmark [31, Sec. 4.2]
also results from the spatial discretization of a partial differential equation (PDE), where each
variable represents a node along the beam. The number of states scales proportionally with the
number of nodes used for the discretization and the system is influenced by a single external
input.
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(a) CORA.
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Figure 1: Heat3D: Reachable sets for the temperature at the center of the block over time for
benchmark version HEAT01. Some tools additionally show possible trajectories.

A beam of length L is fixed at one end, while an external load F (t) acts on the other end.
Further model parameters are the cross-section area A as well as the Young modulus E and the
density ρ of the material. The governing partial differential equation models the displacement
u(x, t) as a function of the position x along the beam and the time t: EAuxx − ρAutt = 0.
Please note that the indices indicate partial derivatives with respect to the indexed variables.
To obtain a linear system, the beam is spatially discretized using N nodes from x = 0 to x = L
depending on the stiffness matrix K ∈ RN×N and the mass matrix M ∈ RN×N . The original
model is extended by introducing a damping matrix D = aK + bM , where a = b = 10−6, to
model a more realistic beam. Rewriting the equation into a first-order system of linear ODEs
yields a system dimension of 2N describing the displacement and velocity of each node over
time. The sparsity pattern reveals four blocks of size N × N : The block (1,1) is all-zero, the
block (1,2) is the identity matrix, and the blocks (2,1) and (2,2) are tridiagonal matrices.
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The initial condition is chosen such that all nodes have displacement and velocity zero, i.e.,
∀x ∈ [0, L] : u(x, 0) = 0, ut(x, 0) = 0. The boundary condition keeps the displacement at the
fixed end zero at all times so that ∀t : u(0, t) = 0. The load is modeled by F (t) = 10000H(t)
with H(t) denoting the Heaviside function. Finally, the time horizon is set to T = 0.01. For
discrete-time tools, a step size of 9.88 · 10−7 is used.

3.2.2 Specifications

The goal is to find the maximum displacement and maximum velocity reached at the position
x = 0.7L. For this year, we only have one suggested size, but this is to be extended in the
future.

CB01 N = 100 (200 dimensions).

The load F (t) is modeled in two different ways:

CBC0x (constant inputs) The inputs are uncertain only in their initial value and constant over
time: F (0) ∈ F , Ḟ (t) = 0, with F = [9900, 10100].

CBF0x (time-varying inputs) The inputs can change arbitrarily over time: ∀t : F (t) ∈ F , with
F = [9900, 10100].

Note that the load F (t) of the original model is different from the input u(t) to the spatially
discretized system ẋ(t) = Ax(t) + u(t).

3.2.3 Results

Plots for the velocity of the node at x = 0.7L, corresponding to node 70 are shown in Figure 2
over the time interval t ∈ [0, 0.01]. The computation times and the accuracy measure maxt v70
are shown in Table 2.

Note CORA For CBC01, the CORA standard algorithm from [24] with a time step size of
1.429×10−6 (7000 steps) was used, whereas for CBF01, we applied the wrapping-free algorithm
from [26] with a time step size of 1.0 × 10−6 (10000 steps). In both cases, the zonotope order
was tuned to 25.

Note JuliaReach We use LGG09 and step size 10−6 and 10−7 for CBC01 and CBF01, re-
spectively.

Note SpaceEx We use LGG with template direction x170 and adaptive time steps. In order
to obtain a reachability specification, we checked whether x170 ≥ xmax is reachable, where xmax

was a user-provided value.

3.3 International Space Station Benchmark

3.3.1 Model

The International Space Station (ISS) is a continuous linear time-invariant system ẋ(t) =
Ax(t) + Bu(t) proposed as a benchmark in ARCH 2016 [37]. In particular, the considered
system is a structural model of the component 1R (Russian service module), which has 270
state variables with three inputs.
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(a) CORA. (b) JuliaReach. (c) SpaceEx.

Figure 2: Clamped Beam CBC01: Reachable sets for the velocity at node 70. Some tools
additionally show possible trajectories.

(a) CORA. (b) JuliaReach. (c) SpaceEx.

Figure 3: Clamped Beam CBF01: Reachable sets for the velocity at node 70. Some tools
additionally show possible trajectories.

Initially, all 270 variables are in the range [−0.0001, 0.0001], u1 is in [0, 0.1], u2 is in [0.8, 1],
and u3 is in [0.9, 1]. The time bound is 20. Discrete-time analysis for the space station bench-
mark should be done with a step size of 0.01. The A, B, and C matrices are available in
MATLAB format2 (that can also be opened with Python using scipy.io.loadmat) and in
SpaceEx format3. There are two versions of this benchmark:

Table 2: Computation Times in [s] and accuracy measure maxt v70 for the Clamped Beam
benchmark.

tool CBC01 CBF01 language

Time maxt v70 Time maxt v70

CORA 7.1 70.11 30 73.78 MATLAB

JuliaReach 1.4 71.63 12 75.63 Julia

SpaceEx 312.78 71.7 318.88 74 C++

discrete-time tools

JuliaReach 0.6 71.6 0.5 73.78 Julia

2slicot.org/objects/software/shared/bench-data/iss.zip
3cps-vo.org/node/34059
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ISSF01 The inputs can change arbitrarily over time: ∀t : u(t) ∈ U .

ISSC01 (constant inputs) The inputs are uncertain only in their initial value and constant over
time: u(0) ∈ U , u̇(t) = 0.

3.3.2 Specifications

The verification goal is to check the ranges reachable by the output y3, which is a linear
combination of the state variables (y = Cx, C ∈ R3×270). In addition to the safety specification,
for each version there is an UNSAT instance that serves as a sanity check to ensure that
the model and the tool work as intended. But there is a caveat: In principle, verifying an
UNSAT instance only makes sense formally if a witness is provided (counter-example, under-
approximation, etc.). Since most of the participating tools do not have this capability, we
run the tools with the same accuracy settings on an SAT-UNSAT pair of instances. The SAT
instance demonstrates that the over-approximation is not too coarse, and the UNSAT instance
demonstrates that the over-approximation is indeed conservative, at least in the narrow sense
of the specification.

ISS01 Bounded time, safe property: For all t ∈ [0, 20], y3(t) ∈ [−0.0007, 0.0007]. This property
is used with the uncertain input case (ISSF01) and assumed to be satisfied.

ISS02 Bounded time, safe property: For all t ∈ [0, 20], y3(t) ∈ [−0.0005, 0.0005]. This property
is used with the constant input case (ISSC01) and assumed to be satisfied.

ISU01 Bounded time, unsafe property: For all t ∈ [0, 20], y3(t) ∈ [−0.0005, 0.0005]. This
property is used with the uncertain input case (ISSF01) and assumed to be unsatisfied.

ISU02 Bounded time, unsafe property: For all t ∈ [0, 20], y3(t) ∈ [−0.00017, 0.00017]. This
property is used with the constant input case (ISSC01) and assumed to be unsatisfied.

3.3.3 Results

Results of the international space station benchmark for state y3 over time are shown in Fig. 4
and Fig. 5. The computation times of various tools for the benchmark are listed in Tab. 3.

Note CORA CORA applies the block-decomposition algorithm [16] with step size 0.01 and
zonotope order 30 for benchmark version ISSF01. For version ISSC01, a step size of 0.02 and
a zonotope order of 10 is used.

Note JuliaReach We use the LGG09 implementation. The step sizes in dense time are
6× 10−4 for ISSF01 and 1× 10−2 for ISSC01.

Note SpaceEx SpaceEx was run with the LGG algorithm. The sampling was chosen as
0.005 for ISSF01 and 0.05 for ISSC01. Only the two template directions ±y3 were used. Since
y3 is an algebraic variable that is a linear expression of the state variables, we replaced it in the
forbidden states and the direction definition by the corresponding linear expression. To model
the constant inputs in ISSC01, we introduced u1, u2, u3 as state variables with u̇1 = u̇2 = u̇3 =
0. A custom algorithm for constant inputs could avoid such an artificial augmentation and
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significantly reduce the runtime for ISSC01. Note that SpaceEx treats the initial states as a
general polyhedron, i.e., a linear program is solved at every time step. SpaceEx also computes
the full matrix exponential, a 270 × 270 matrix, even though in the LGG algorithm it would
suffice to compute the vector eAt` for each template direction `.

Since SpaceEx does not currently support the plotting of algebraic variables, we used the
following trick to plot y3 over time: we introduced a state variable z with dynamics ż =
−1000(z − y3). Since the time constant for z is about two orders of magnitude below that of
y3, we expect the plots to be practically identical to a true plot of y3.

(a) CORA. (b) JuliaReach. (c) SpaceEx.

Figure 4: ISS: Reachable sets of y3 plotted over time for the uncertain input case.

(a) CORA. (b) JuliaReach. (c) SpaceEx.

Figure 5: ISS: Reachable sets of y3 plotted over time for the constant input case.

3.4 Spacecraft Rendezvous Benchmark

3.4.1 Model

Spacecraft rendezvous is a perfect use case for formal verification of hybrid systems since mis-
sion failure can cost lives and is extremely expensive. This benchmark is taken from [17]; its
original continuous dynamics is nonlinear, and the original system is verified in the ARCH-
COMP category Continuous and Hybrid Systems with Nonlinear Dynamics. When spacecraft
are in close proximity (such as rendezvous operations), a common approximation to analyze
the nonlinear dynamics is to use the linearized Clohessy-Wiltshire-Hill (CWH) equations [19].
This benchmark analyzes this linear hybrid model.
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Table 3: Computation Times for the International Space Station Benchmark in [s].

ISSF01 ISSC01

tool ISS01 ISU01 ISS02 ISU02 language

CORA 59 38 1.3 0.072 MATLAB

JuliaReach 10 10 1.4 1.4 Julia

SpaceEx 49 48 29 29 C++

discrete-time tools

JuliaReach 10 10 1.4 1.4 Julia

The hybrid nature of this benchmark originates from a switched controller, while the dy-
namics of the spacecraft is purely continuous. In particular, the modes are approaching (100m-
1000m), rendezvous attempt (less than 100m), and aborting. Discrete-time analysis for the
rendezvous system should be done with a step size of 0.1. The model is available in C2E2,
SDVTool, and SpaceEx format on the ARCH website4. The set of initial states is

X0 =


−900
−400

0
0

⊕


[−25, 25]
[−25, 25]

0
0

 .
The following benchmark instances are considered:

SRNA01 The spacecraft approaches the target as planned and there exists no transition into
the aborting mode.

SRA01 A transition into aborting mode occurs at time t = 120 [min].

SRA02 A transition into aborting mode occurs nondeterministically, t ∈ [120, 125] [min].

SRA03 A transition into aborting mode occurs nondeterministically, t ∈ [120, 145] [min].

SRA04 A transition into aborting mode occurs at time t = 240 [min].

SRA05 A transition into aborting mode occurs nondeterministically, t ∈ [235, 240] [min].

SRA06 A transition into aborting mode occurs nondeterministically, t ∈ [230, 240] [min].

SRA07 A transition into aborting mode occurs nondeterministically, t ∈ [50, 150] [min].

SRA08 A transition into aborting mode occurs nondeterministically, t ∈ [0, 240] [min].

An initial, discrete-time analysis indicated it is safe to enter the aborting mode up to around
time t = 250 [min]. We also added the following two instances, which are presumably unsafe.
For timing, tools should use the same settings for these as for the safe cases.

SRU01 A transition into aborting mode occurs at time t = 260 [min].

SRU02 A transition into aborting mode occurs nondeterministically, t ∈ [0, 260] [min].
4cps-vo.org/node/36349

12

https://cps-vo.org/node/36349


ARCH-COMP21 Linear Dynamics Althoff et al.

3.4.2 Specifications

Given the thrust constraints of the specified model, in mode rendezvous attempt, the absolute
velocity must stay below 0.055 m/s. In the aborting mode, the vehicle must avoid the target,
which is modeled as a box B with 0.2 m edge length and the center placed as the origin. In the
rendezvous attempt the spacecraft must remain within the line-of-sight cone L = {[x, y]T | (x ≥
−100m) ∧ (y ≥ x tan(30◦)) ∧ (−y ≥ x tan(30◦))}. It is sufficient to check these parameters for
a time horizon of 300 minutes.

Let us denote the discrete state by z(t) and the continuous state vector by x(t) =
[sx, sy, vx, vy]T , where sx and sy are the positions in x- and y-direction, respectively, and vx
and vy are the velocities in x- and y-direction, respectively. The mode approaching is denoted
by z1, the mode rendezvous attempt by z2, and the mode aborting by z3. We can formalize the
specification as

SR02 ∀t ∈ [0, 300min],∀x(0) ∈ X0 : (z(t) = z2) =⇒
(√

v2x + v2y ≤ 0.055m/s ∧

[sx, sy]T ∈ L
)
∧ (z(t) = z3) =⇒ ([sx, sy]T /∈ B).

To solve the above specification, all tools under-approximate the nonlinear constraint√
v2x + v2y ≤ 0.055m/s by an octagon as shown in Fig. 6.

x

y

0.055m/s

under-approximating
octagon original

constraint

Figure 6: Under-approximation of the nonlinear velocity constraint by an octagon.

Remark on nonlinear constraint In the original benchmark, the constraint on the ve-
locity was set to 0.05 m/s, but it can be shown that this constraint cannot be satisfied by a
counterexample. For this reason, we have relaxed the constraint to 0.055 m/s.

3.4.3 Results

Results of the spacecraft rendezvous benchmark for the sx-sy-plane are shown for the version
SRNA01 in Fig. 7 and for the version SRA01 in Fig. 8. The computation times of various tools
for the spacecraft rendezvous benchmark are listed in Tab. 4.

Note CORA For both benchmark versions, CORA was run with a zonotope order of 10
and with the following step sizes: 0.2 [min] for the mode approaching, 0.02 [min] for the mode
rendezvous attempt, and 0.2 [min] for the mode aborting (does not exist for version SRNA01).
Intersections with deterministic guards are calculated with the method of Girard and Le Guernic
in [25]. In order to find suitable orthogonal directions for the method in [25], we perform the
following procedure: first, we project the last zonotope not intersecting the guard set onto the

13
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guard set; second, we apply principal component analysis to the generators of the projected
zonotope, providing us with the orthogonal directions. For non-deterministic guards we first
unite all reachable sets intersecting the guard set and then compute the intersection using
constrained zonotopes [35].

Note JuliaReach We use BFFPSV18 and chose a one-block partition and hyperrectangular
reach sets with a step size in dense time of 0.04 for instances SRA01-SRA03. We handle
discrete transitions by computing the intersection with invariants and guards lazily before their
overapproximation with a hyperrectangle. For the instance SRA04, we use a clustering strategy
of order 40 and step size of 0.01. For the unsat instances we use the step size 0.04.

Note SpaceEx SpaceEx was run with the LGG algorithm, box directions, and a flowpipe
tolerance of 0.2.

(a) CORA. (b) JuliaReach. (c) SpaceEx.

Figure 7: Reachable sets for the spacecraft rendezvous benchmark in the sx-sy-plane for the
benchmark variant without maneuver abortion (SRNA01).

(a) CORA. (b) JuliaReach. (c) SpaceEx.

Figure 8: Reachable sets for the spacecraft rendezvous benchmark in the sx-sy-plane for the
benchmark variant with maneuver abortion at t = 120 [min] (SRA01, over analysis time horizon
of 300 [min])

14
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Table 4: Computation time [s] for the spacecraft rendezvous benchmarks (SR*) for specification
SR02.

tool NA01 A01 A02 A03 A04 A05 A06 A07 A08 U01 U02

CORA 13 2.6 3.5 5.4 12 16 16 31 90 12 95

JuliaReach 0.34 0.35 0.37 0.57 36 − − − − 3.7 7.7

SpaceEx 0.21 0.22 − − − − − − − 4.2 21

discrete-time tools

JuliaReach 0.12 0.14 0.14 0.24 − − − − − − 4.3

3.5 Powertrain with Backlash

3.5.1 Model

The powertrain benchmark is an extensible benchmark for hybrid systems with linear continuous
dynamics taken from [8, Sec. 6] and [12, Sec. 4]. The essence of this benchmark is recalled here,
and the reader is referred to the above-cited papers for more details. The benchmark considers
the powertrain of a vehicle consisting of its motor and several rotating masses representing
different components of the powertrain, e.g., gears, differential, and clutch, as illustrated in
Fig. 9. The benchmark is extensible in the sense that the number of continuous states can be
easily extended to n = 7+2θ, where θ is the number of additional rotating masses. The number
of discrete modes, however, is fixed and originates from backlash, which is caused by a physical
gap between two components that are normally touching, such as gears. When the rotating
components switch direction, for a short time they temporarily disconnect, and the system is
said to be in the dead zone. The model is available in SpaceEx format on the ARCH website5.
The set of initial states is

X0 = {c+ αg | α ∈ [−1, 1]},
c = [−0.0432,−11, 0, 30, 0, 30, 360,−0.0013, 30, . . . ,−0.0013, 30]T ,

g = [0.0056, 4.67, 0, 10, 0, 10, 120, 0.0006, 10, . . . , 0.0006, 10]T .

3.5.2 Specifications

We analyze an extreme maneuver from a maximum negative acceleration that lasts for 0.2 [s],
followed by a maximum positive acceleration that lasts for 1.8 [s]. The initial states of the
model are on a line segment in the n-dimensional space. We create different difficulty levels
of the reachability problem by scaling down the initial states by some percentage. The model
has the following non-formal specification: after the change of direction of acceleration, the
powertrain completely passes the dead zone before being able to transmit torque again. Due
to oscillations in the torque transmission, the powertrain should not re-enter the dead zone of
the backlash.

To formalize the specification using linear time logic (LTL), let us introduce the following
discrete states:

• z1 : left contact zone

5cps-vo.org/node/49115
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Figure 9: Powertrain model.

• z2 : dead zone

• z3 : right contact zone

For all instances, the common specification is: For all t ∈ [0, 2], x(0) ∈ X0, (z2Uz3) =⇒
G(z3). The instances only differ in the size of the system and the initial set, where center(·)
returns the volumetric center of a set.

DTN01 θ = 2, X0 := 0.05(X0 − center(X0)) + center(X0).

DTN02 θ = 2, X0 := 0.3(X0 − center(X0)) + center(X0).

DTN03 θ = 2, no change of X0.

DTN04 θ = 22, X0 := 0.05(X0 − center(X0)) + center(X0).

DTN05 θ = 22, X0 := 0.3(X0 − center(X0)) + center(X0).

DTN06 θ = 22, no change of X0.

3.5.3 Results

Results of the powertrain benchmark in the x1-x3-plane are shown in Fig. 10. The computation
times of various tools for the powertrain benchmark are listed in Tab. 5.

Note CORA CORA uses the following time step sizes: 0.005s for DTN01, DTN02, and
DTN03; 0.002s for DTN04; and 0.001s for DTN05 and DTN06. For all benchmark versions,
CORA was run with a zonotope order of 20. The intersections with the guard sets are calculated
with the approach from [25], and principal component analysis is used to find suitable directions
for the enclosure of the guard intersections.

Note JuliaReach We use the GLGM06 algorithm with a step size of 0.001. In addition we use
slightly different analysis parameters for different modes.
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(a) CORA (DTN03). (b) JuliaReach (DTN03). (c) JuliaReach (DTN05).

Figure 10: Reachable sets in the x1-x3-plane.

Table 5: Computation Times for the Powertrain Benchmark in [s].

tool DTN01 DTN02 DTN03 DTN04 DTN05 DTN06 language

CORA 5.6 5.4 5.5 39 74 212 MATLAB

JuliaReach 0.2 0.2 0.1 0.3 0.7 0.8 Julia

3.6 Building Benchmark

3.6.1 Model

This benchmark is quite straightforward: The system is described by ẋ(t) = Ax(t) + Bu(t),
u(t) ∈ U , y(t) = Cx(t), where A, B, C are provided on the ARCH website6. The initial set and
the uncertain input U are provided in [37, Tab. 2.2]. Discrete-time analysis for the building
system should use a step size of 0.01. There are two versions of this benchmark:

BLDF01 The inputs can change arbitrarily over time: ∀t : u(t) ∈ U .

BLDC01 (constant inputs) The inputs are uncertain only in their initial value, and constant
over time: u(0) ∈ U , u̇(t) = 0. The purpose of this model instance is to accommodate
tools that cannot handle time-varying inputs.

3.6.2 Specifications

The verification goal is to check whether the displacement y1 of the top floor of the building re-
mains below a given bound. In addition to the safety specification from the original benchmark,
there are two UNSAT instances that serve as sanity checks to ensure that the model and the
tool work as intended. But there is a caveat: In principle, verifying an UNSAT instance only
makes sense formally if a witness is provided (counter-example, under-approximation, etc.).
Since most of the participating tools do not have this capability, we run the tools with the
same accuracy settings on an SAT-UNSAT pair of instances. The SAT instance demonstrates
that the over-approximation is not too coarse, and the UNSAT instance indicates that the
over-approximation is indeed conservative.

BDS01 Bounded time, safe property: For all t ∈ [0, 20], y1(t) ≤ 5.1 · 10−3. This property is
assumed to be satisfied.

6cps-vo.org/node/34059
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BDU01 Bounded time, unsafe property: For all t ∈ [0, 20], y1(t) ≤ 4 · 10−3. This property
is assumed to be violated. Property BDU01 serves as a sanity check. A tool should be
run with the same accuracy settings on BLDF01-BDS01 and BLDF01-BDU01, returning
UNSAT on the former and SAT on the latter.

BDU02 Bounded time, unsafe property: The forbidden states are {y1(t) ≤ −0.78·10−3∧t = 20}.
This property is assumed to be violated for BLDF01 and satisfied for BLDC01. Property
BDU02 serves as a sanity check to confirm that time-varying inputs are taken into account.
A tool should be run with the same accuracy settings on BLDF01-BDU02 and BLDC01-
BDU02, returning UNSAT on the former and SAT on the latter.

3.6.3 Results

Results of the building benchmark for state x25 over time are shown in Fig. 11-14. The com-
putation times of various tools for the building benchmark are listed in Tab. 6.

Note CORA Since the dynamics of this example is dominated by the input after one second,
we use the step size 0.002 for t ∈ [0, 1] and the step size 0.01 for t ∈ [1, 20]. The zonotope order
is chosen as 100.

Note HyDRA We use a step size of 0.004 and support functions with an octagonal template
as a state set representation. As HyDRA cannot handle uncertain inputs, we have added
another variable to the model accounting for the uncertain input.

Note JuliaReach Since the safety property only involves one state variable, we use the LGG09
algorithm. Here we use the step sizes (in dense time) 0.004 for BLDF01 and 0.006 for BLDC01.

Note SpaceEx The accuracy of SpaceEx was set to the largest value possible that satisfies
the specification, here ε = 0.01. This means the tool can exploit any margin to reduce the
number of computations and/or the number of convex sets in the reach set. The resulting,
intentional lack of accuracy shows in the plot.

Table 6: Computation Times for the Building Benchmark in [s].

BLDC01 BLDF01

tool BDS01 BDS01 language

CORA 2.9 3.3 MATLAB

HyDRA 0.426 − C++

JuliaReach 0.0096 0.012 Julia

SpaceEx 1.6 1.8 C++

discrete-time tools

JuliaReach 0.0021 0.0025 Julia
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(a) CORA. (b) JuliaReach.

(c) SpaceEx.

Figure 11: Building (BLDF01): Reachable sets of x25 plotted over time up to time 1. Some
tools additionally show possible trajectories.

3.7 Platooning Benchmark

3.7.1 Model

The platooning benchmark considers a platoon of three vehicles following each other. This
benchmark considers loss of communication between vehicles. The initial discrete state is qc.
Three scenarios are considered for the loss of communication:

PLAA01 (arbitrary loss) The loss of communication can occur at any time, see Fig. 15(a). This
includes the possibility of no communication at all.

PLADxy (loss at deterministic times) The loss of communication occurs at fixed points in time,
which are determined by clock constraints c1 and c2 in Fig. 15(b). The clock t is reset
when communication is lost and when it is re-established. Note that the transitions have
must-semantics, i.e., they take place as soon as possible.

PLAD01: c1 = c2 = 5.
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(a) CORA. (b) JuliaReach.

(c) SpaceEx.

Figure 12: Building (BLDF01): Reachable sets of x25 plotted over time up to time 20. Some
tools additionally show possible trajectories.

PLANxy (loss at nondeterministic times) The loss of communication occurs at any time
t ∈ [tb, tc] in Fig. 15(c). The clock t is reset when communication is lost and when it
is re-established. Communication is reestablished at any time t ∈ [0, tr]. This scenario
covers loss of communication after an arbitrarily long time t ≥ tc by reestablishing com-
munication in zero time.

PLAN01: tb = 10, tc = 20, tr = 20.

The models are available in SpaceEx, KeYmaera, and MATLAB/Simulink format on the ARCH
website7. Discrete-time analysis for the platoon system should use a step size of 0.1.

Discussion The arbitrary-loss scenario (PLAA) subsumes the other two instances (PLAD,
PLAN).

7cps-vo.org/node/15096
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(a) CORA.
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(b) HyDRA.

(c) JuliaReach. (d) SpaceEx.

Figure 13: Building (BLDC01): Reachable sets of x25 plotted over time up to time 1. Some
tools additionally show possible trajectories.

3.7.2 Specifications

The verification goal is to check whether the minimum distance between vehicles is preserved.
The choice of the coordinate system is such that the minimum distance is a negative value.

BNDxy Bounded time (no explicit bound on the number of transitions): For all t ∈ [0, 20] [s],
x1(t) ≥ −dmin [m], x4(t) ≥ −dmin [m], and x7(t) ≥ −dmin [m].

BND50: dmin = 50.

BND42: dmin = 42.

BND30: dmin = 30.

UNBxy Unbounded time and unbounded switching: For all t ≥ 0 [s], x1(t) ≥ −dmin [m],
x4(t) ≥ −dmin [m], and x7(t) ≥ −dmin [m].

UNB50: dmin = 50.
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(a) CORA.
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(b) HyDRA.

(c) JuliaReach. (d) SpaceEx.

Figure 14: Building (BLDC01): Reachable sets of x25 plotted over time up to time 20. Some
tools additionally show possible trajectories.

UNB42: dmin = 42.

UNB30: dmin = 30.

3.7.3 Results

Results of the platoon benchmark for state x1 over time are shown in Fig. 16-18. The compu-
tation times of various tools for the platoon benchmark are listed in Tab. 7.

Note CORA CORA was run with the following settings:

• PLAA01-BND50: zonotope order 400 and time step size 0.02.

• PLAA01-BND42: zonotope order 800 and time step size 0.009.

• PLAD01-BND42: zonotope order 20 and time step size 0.02s.
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ẋ = Acx + BcaL
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(b) Deterministic switching.
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ṫ = 1

x ∈ Dn

t ∈ [tb, tc]

t := 0

t ∈ [0, tr ]

t := 0

(c) Nondeterministic switching.

Figure 15: Three options adapted from the original benchmark proposal [14]. On the left,
the system can switch arbitrarily between the modes. In the middle, mode switches are only
possible at given points in time. On the right, mode switches are only possible during given
time intervals.

• PLAD01-BND30: zonotope order 200 and time step size 0.02.

• PLAN01-UNB50: zonotope order 400 and time step size 0.01. To verify the specification
for all times, the reachable set was increased by 1% at t = 50 and it was checked whether
this set is re-entered.

• PLAA01: we used continuization [9, 10] to rewrite the hybrid automaton as a purely
continuous system with uncertain parameters.

Note HyDRA As HyDRA cannot handle uncertain time-varying inputs, we use an instance
of the platoon benchmark in which inputs are constant (similar to the building benchmark). We
use a step size of 0.25 and support functions with an octagonal template for instance DBND30
and a box-shaped template for instance DBND42.

Note JuliaReach For PLAD01-BND42, we use the BFFPSV18 algorithm with a one-block
partition, hyperrectangular reach-sets, and a step size (in dense time) of 0.01. For PLAD01-
BND30, we use the LGG09 algorithm with a step size (in dense time) of 0.03, and intersections
with the guard are taken lazily with an octagonal template.

Table 7: Computation Times for the Platoon Benchmark in [s].

PLAA01 PLAA01 PLAD01 PLAD01 PLAN01

tool BND50 BND42 BND42 BND30 UNB50 language

CORA 13 40 1.4 3.3 158 MATLAB

HyDRA − − 1.830 104 − C++

JuliaReach − − 0.031 30 − Julia

SpaceEx − − 0.36 9.8 109 C++

discrete-time tools

JuliaReach − − 0.48 10 − Julia
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(a) CORA.

Figure 16: PLAA01: Reachable sets of x1 plotted over time. CORA additionally shows possible
trajectories.

3.8 Gearbox Benchmark

3.8.1 Model

The gearbox benchmark models the motion of two meshing gears. When the gears collide, an
elastic impact takes place. As soon as the gears are close enough, the gear is considered meshed.
The model includes a monitor state that checks whether the gears are meshed or free and is
available in SpaceEx format8 and as a Simulink model9. Once the monitor reaches the state
meshed, it stays there indefinitely.

With four continuous state variables, the gearbox benchmark has a relatively low number
of continuous state variables. The challenging aspect of this benchmark is that the solution
heavily depends on the initial state as already pointed out in [18]. For some initial continuous
states, the target region is reached without any discrete transition, while for other initial states,
several discrete transitions are required.

In the original benchmark, the position uncertainty in the direction of the velocity vector
of the gear teeth (x-direction) is across the full width of the gear spline. Uncertainties of the
position and velocity in y-direction, which is perpendicular to the x-direction, are considered
to be smaller. Due to the sensitivity with respect to the initial set, we consider smaller initial
sets. The full uncertainty in x-direction could be considered by splitting the uncertainty in
x-direction and aggregating the individual results. For discrete-time analysis of the gearbox
system, a step size of 0.0001 (1.0E-4) should be used.

GRBX01: The initial set is X0 = 0× 0× [−0.0168,−0.0166]× [0.0029, 0.0031]× 0.

GRBX02: The initial set is X0 = 0× 0× [−0.01675,−0.01665]× [0.00285, 0.00315]× 0.

8cps-vo.org/node/34375
9cps-vo.org/node/34374
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(a) CORA (BND30).
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Figure 17: PLAD01: Reachable sets of x1 plotted over time. Some tools additionally show
possible trajectories.

3.8.2 Specification

The goal is to show that the gears are meshed within a time frame of 0.2 [s] and that the bound
x5 ≤ 20 [Nm] of the cumulated impulse is met. Using the monitor states free and meshed , and a
global clock t, this can be expressed as a safety property as follows: For all t ≥ 0.2, the monitor
should be in meshed . Under nonblocking assumptions, this means that t < 0.2 whenever the
monitor is not in meshed , i.e., when it is in free.

MES01: forbidden states: (free ∧ t ≥ 0.2) ∨ (x5 ≥ 20)

3.8.3 Results

Results of the benchmark for state x3 and x4 are shown in Fig. 19. The computation times of
various tools for the benchmark are listed in Tab. 8.
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(a) CORA (UNB50). (b) SpaceEx (UNB50).

Figure 18: PLAN01: Reachable sets of x1 plotted over time.

Note CORA CORA was run with a time step size of 0.0011 and a zonotope order of 20. The
intersections with the guard sets were calculated with the method of Girard and Le Guernic
[25]. In order to find suitable orthogonal directions for the method in [25], we perform the
following procedure: first, we project the last zonotope not intersecting the guard set onto the
guard set; second, we apply principal component analysis to the generators of the projected
zonotope, providing us with the orthogonal directions.

Note JuliaReach We use the LGG09 algorithm with step sizes (in dense time) of 0.0005
(GRBX01) resp. 0.0008 (GRBX02).
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(a) CORA. (b) JuliaReach. (c) SpaceEx.

Figure 19: Gearbox (GRBX01): Reachable sets of x3 and x4.
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Table 8: Computation Times of the Gearbox Benchmark in [s].

tool GRBX01-MES01 GRBX02-MES01 language

CORA 0.95 0.88 MATLAB

JuliaReach 2.4 1.5 Julia

SpaceEx 0.069 0.071 C++

discrete-time tools

JuliaReach 8.5 8.8 Julia

3.9 Brake Benchmark

3.9.1 Model

The brake benchmark models an electro-mechanical braking system, where a motor pushes a
brake caliper against a brake disk that is connected to a (car) wheel [36]. The model describes
a closed-loop system comprising a plant model as well as a controller and is representative for
challenges in automotive systems. The original Simulink model has been simplified for usage
in various analysis tools10. Here, we consider a linearized version with parameters.

İ = 1
L ·
(

(KP · xe +KI · xc)− (R+ K2

drot
) · I

)
ẋ = K

i·drot
· I

ẋe = 0

ẋc = 0

Ṫ = 1

T ≤ Tsample + ζ

T ≥ Tsample + ζ

x′e := x0 − x
x′c := xc + Tsample · (x0 − x)

T ′ := T − Tsample

Figure 20: Hybrid automaton of the electro-mechanical brake with periodic discrete-time PI
controller and sampling jitter.

The model is a hybrid automaton (see Fig. 20) with four state variables (the motor current I,
the brake position x, and two auxiliary linearization variables) and a clock variable T . The
automaton consists of a single mode and a self-loop transition. The transition is time-triggered,
i.e., it only depends on the value of the clock variable.

We consider two types of uncertainties in the model. The first uncertainty is a variation
in the model parameters. We use the settings from [36] for the nonparametric and parametric
scenarios. The second uncertainty is sampling jitter (i.e., nondeterministic switching). Unlike
the linear model in [36], we consider jitter with a periodic clock (instead of a drifting clock).

10cps-vo.org/node/20289
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3.9.2 Specification

While structurally simple, the benchmark is challenging due to the large number of 1,001
discrete jumps within the time horizon 0.1. The initial state is the origin, we use the parameters
x0 = 0.05 and Tsample = 10−4, and in the case of nondeterministic switching the transitions are
taken at multiples of Tsample with a nondeterministic jitter from the interval ζ = [−10−8, 10−7].
We study the property x < x0 in both scenarios without and with parameter ranges:

BRKDC01: Verify that x < x0 holds for the whole time horizon 0.1 (non-parametric scenario
with deterministic switching).

BRKNC01: Same as BRKDC01, but with non-deterministic switching.

BRKNP01: Report the largest time horizon for which x < x0 holds (parametric scenario with
non-deterministic switching).

3.9.3 Results

Results of the benchmark are shown in Fig. 21. The computation times of various tools for the
benchmark are listed in Tab. 9.

Note CORA CORA was run with a time step size of 2−6, a zonotope order of 20, and the
intersections with the non-deterministic guard sets were calculated with constrained zonotopes
[35].

Note JuliaReach For the BRKDC01 and BRKNC01 scenario, we use the GLGM06 algorithm
with a fixed step size of 10−7 resp. 10−8. For the BRKNP01 scenario, we use the ASB07

algorithm with a step size of 10−8. In all scenarios we use a maximum zonotope order of one.
The discrete-time instances use the same step sizes as the dense-time ones. We use a custom
analysis for dealing with the time-triggered transition efficiently, considering intersections with
the guard separately from the flowpipe computation, as described in [20]. The largest time
horizon for which x < x0 holds for BRKNP01 is 0.0823s and 0.0824s for dense and continuous
time, respectively.

Note SpaceEx We use the STC algorithm, which here is significantly faster than the LGG
algorithm despite using sophisticated algorithms for containment checking, convexification, and
redundancy reduction of polyhedra. Since SpaceEx is a model checker, it checks after each jump
whether the successor states have already been visited. In this benchmark, all states are in the
same location. At the k-th jump, this leads to a pairwise containment check with all k − 1
previous states. This consumes about 90% of the runtime. For the non-deterministic instance
BRKNC01, the required precision means that polyhedra are much more complex than in the
deterministic instance (more faces). The containment checking therefore leads to an excessive
runtime.

4 Conclusion and Outlook

This report presents the results of the fourth friendly competition for the formal verification
of continuous and hybrid systems with linear continuous dynamics as part of the ARCH’21
workshop. The reports of other categories can be found in the proceedings and on the ARCH
website: cps-vo.org/group/ARCH.
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(a) CORA.
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Figure 21: Brake: Reachable sets for x over time. Some tools additionally show possible
trajectories.

Table 9: Computation Times of the Brake Benchmark in [s].

tool BRKDC01 BRKNC01 BRKP01 language

CORA 12 603 739 MATLAB

JuliaReach 0.82 1.7 18 Julia

SpaceEx 21 − − C++

discrete-time tools

JuliaReach 0.081 0.56 17 Julia

A major observation of the results is that participating tools have significantly reduced
computation times compared to the previous year. Also, one can now execute the Dockerfile of
all tools on gitlab.com/goranf/ARCH-COMP using the command measure all. Information
about the competition in 2022 will be announced on the ARCH website.
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