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Abstract
Side-channel attacks aim at extracting secret keys from cryptographic devices. Ran-

domly masking the implementation is a provable way to protect the secrets against this
threat. Recently, various masking schemes have converged to the “code-based masking”
philosophy. In code-based masking, different codes allow for different levels of side-channel
security. In practice, for a given leakage function, it is important to select the code which
enables the best resistance, i.e., which forces the attacker to capture and analyze the largest
number of side-channel traces.

This paper is a first attempt to address the constructive selection of the optimal codes
in the context of side-channel countermeasures, in particular for code-based masking when
the device leaks information in the Hamming weight leakage model. We show that the
problem is related to the weight enumeration of the extended dual of the masking code.
We first present mathematical tools to study those weight enumeration polynomials, and
then provide an efficient method to search for good codes, based on a lexicographic sorting
of the weight enumeration polynomial from lowest to highest degrees.

Keywords. Side-Channel Analysis, Masking Scheme, Information-Theoretic Metric, Lin-
ear Code, Security Formalization, Weight Distribution.

1 Introduction
Cryptographic devices are prone to side-channel attacks. These attacks consist in the analysis
of unintentional leakages, arising from within the computation of the cryptographic algorithms.
Leakages are captured as execution traces by fast sampling apparatus, such as high bandwidth
oscilloscopes. In a typical side-channel attack, numerous traces are gathered into a dataset,
referred to as an acquisition campaign. In the recent years, strong efforts have been deployed
for devising techniques to extract as much information as possible about the secret key. Up-
to-date exploits concern template attacks, including machine learning and artificial intelligence
attacks.

It is thus extremely important to ensure some reliable protection against those attacks.
Countermeasures are optimized accordingly, favoring those whose implementation is mathe-
matically provable. For this reason, random masking [12,20] has turned out to be the counter-
measure of reference.
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Recently, general code-based masking (GCM) [6, 24] has been promoted as a way to unite
several masking schemes. The peculiarities of inner product masking, direct sum masking,
etc. can indeed be united into the GCM framework. This framework is amenable to encoding
algorithms employing data units as bit strings of ℓ bits—where for instance, ℓ = 8 for AES (a
byte-oriented block cipher) and ℓ = 4 for PRESENT (a nibble-oriented block cipher). Therefore,
codes in GCM are naturally built with F2ℓ as the base field.

However, optimizing codes which underlie the GCM implementation is still an open question
not fully resolved. Indeed, as of today, two leakage models co-exist:

• The probing leakage model (at word level, in F2ℓ);

• The bounded moment leakage model (at bit level, in F2).

Accordingly, these two leakage models are concerned with two different adversarial strategies,
namely:

• The probing model considers an attacker who can place a limited number of probes to
acquire a linear dump of the consecutive values taken on by the probed variables. This
model is an extension of the one proposed in the seminal paper from Ishai, Sahai and
Wagner [12] which only considered bits. Current probing models encompass probing of
full-width registers [20].

• The bounded moment model [2] considers the realization of a (high-order) correlation
analysis, whereby different signals are combined so as to weaken, or eventually cancel out
completely, the effect of the mask. These attacks exploit the signals arising from any bits
manipulated in the netlist, and the order of the attack is the limiting complexity factor.

Now, in the context of the practical security evaluation of a device, both models are to be
considered at once. The commonality between both models is that the masking strength relates
to the dual distance of the masking code [5, 18]. Also, the bit level security relates to the
extension of the code into the base field [5, 7]. Putting everything together,

• The probing model is limited by the number of probes t: The masking code in F2ℓ must
have a dual distance strictly greater than t.

• The bounded moment model requires that the subfield extension of the masking code from
F2ℓ to F2 has a dual distance as high as possible. It is of course at least as large as that
of the code on F2ℓ , but can (and ideally should) be strictly larger.

Essentially, two leakage models are connected with each other. Indeed, given a linear code
over F2ℓ , it is always feasible to extend it into the subfield F2. However, this extension depends
on both the irreducible polynomial used in F2ℓ and the basis used for the extension. In this
paper, we focus on the latter since the finite field is fixed for a specific cryptographic algorithm
like AES or PRESENT. Furthermore, another benefit of extending codes from F2ℓ to F2 is
that it sets the same baseline for all linear codes over F2, resulting that their coding-theoretic
properties can be fairly compared.

Contributions. In this paper, we show how to build codes with length n = t+1 which have
a good bit-level security order. We revisit the code extension from F2ℓ to F2 by using subfield
representation with trace-orthogonal bases, which brings the commutative relationship between
subfield representation and duality of the code. Next, we connect the side-channel resistance of
a code-based masking to the whole weight distribution of corresponding linear codes. With the
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lexicographical order of weight distribution, we show how to choose the best one among them,
and validate our approach by an information-theoretic assessment. In summary, our findings
empower the code-based masking by providing optimal linear codes which can maximize the
side-channel resistance from an information-theoretic perspective.

2 Background

2.1 Preliminaries
We first introduce several definitions which will be used throughout this paper.

Definition 1 (Linear code parameters [15]). A linear code C is a set of vectors, called code-
words, which form a vector space over some finite field F2ℓ . The parameters of the linear code
C is a triple (n, k, d), where n is the code length, k is its dimension, and d is its minimum
(Hamming) distance. They are denoted by [n, k, d]2ℓ to refer to the field on which the code is
defined.

Definition 2 (Complement of a linear code). Two linear codes C1 and C2 are complementary
to one another if C1 ∩ C2 = {0}, where 0 is the all-zero codeword.

It is always possible to build a complement of a code C: The generating matrix GC of C can
be complemented by vectors (e.g., randomly, one by one) until it forms a basis of the vector
space. The complemented vectors form the generating matrix of a complement code of C.

Definition 3 (Dual code [15] and dual distance). The dual code of a code C is the linear code
consisting of the set of all vectors orthogonal to all codewords of C. The dual distance d⊥C = dC⊥

of the code C is the minimum distance of its dual code C⊥.

Definition 4 (Weight distribution [15] and kissing number). The (Hamming) weight distri-
bution of a code C of length n is the (n + 1)-tuple of integers Ai, 0 ≤ i ≤ n, such that
Ai = #{c ∈ C,wH(c) = i} (where wH is the Hamming weight).

In particular, the kissing number Ad is the number of codewords at minimum distance d to
any codeword.

Definition 5 (Subfield extension of a code [15]). The subfield representation of x ∈ F2ℓ is its
vector of coordinates [x] ∈ Fℓ

2, which depends on the choice of the basis of F2ℓ over F2.
The subfield extension [C] is the set of all vectors obtained from the codewords of C by taking

the subfield representation of every component.

Considering a generator matrix of a linear code C of size k×n in F2ℓ , the generator matrix
of the extended code [C] has a size of kℓ× nℓ in F2.

As demonstrated in [6,7], a linear code is all the better (in the sense of side-channel resistance
of the code-based masking) that it has a larger dual distance, and also a lower kissing number
for the same dual distance. Therefore, we introduce an ordering of different codes relying on
their weight distributions as follows.

Definition 6 (Prefix-based lexicographical order of sequences). Let (Ai) and (A′
i) (0 ≤ i ≤ n)

be two sequences of integers of length n. The sequence (Ai) is (strictly) smaller than the sequence
(A′

i) if there exists 1 ≤ j ≤ n, such that Ai = A′
i for all 0 ≤ i < j, and Aj < A′

j.

Definition 7 (Best weight distribution). A linear code C is said to be better than a linear
code C ′ if its weight distribution is (prefix-based) smaller than that of C ′. A code has the best
weight distribution if it is better than any other linear code.
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Thus, to obtain the best weight distribution, we apply the following three principles:

1. maximize the minimum distance d (recall that d = min{i ̸= 0, Ai > 0})

2. (in case of a tie) minimize the kissing number Ad

3. (in case of a tie) minimize the following coefficients Ai, i > d in lexicographical order.

Regarding the first principle, it is feasible to construct a maximum distance separable (MDS)
code which maximizes the minimum distance. We have the following Delsarte’s lemma for the
dual of an MDS code.

Lemma 1 (Dual of an MDS code [10]). The dual of an MDS code is also an MDS code.

Corollary 1. The dual distance of a linear MDS code of parameters [n, k]2ℓ is d = k + 1.

Proof of the corollary. The dual distance of a linear MDS code is equal to the minimum distance
of the dual of the code. which has parameters [n, n− k]2ℓ . By Lemma 1, it is MDS. Therefore,
the Singleton bound [22] is tight and we have that n− (n− k) + 1 = d. Hence d = k + 1.

2.2 State-of-the-Art Results
Recall the communication channel-based setting of side-channel analysis [8,9] shown in Figure 1,
with the following notations.

• K, K̂ denote the secret and guessed key, respectively.

• T denotes the plaintext/ciphertext that can be accessed by an adversary.

• U is the sensitive variable which is encoded as V after code-based masking using an
independent random mask M .

• The device leaks under leakage function f (typically Hamming weight f = wH) so that
X = f(V ).

• The side-channel leakage is modeled as Y = X +N where typically N ∼ N (0, σ2) is an
additive white Gaussian noise (AWGN).

Crypto
Leakage
Function

AttackMasking Channel

Figure 1: Side-channel leakage setup and subsequent analysis modelization (modified from [8]).

The Figure 1 makes use of the symbol “⊕” to denote finite field addition, and “+” for
addition of reals. In the sequel, we focus on finite field operations: there is therefore no possible
confusion. Hence we simply use “+” even in finite fields.

We consider the code-based masking of Figure 1 for which

V = UGC +MGD (1)
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where U and M are the sensitive variable and random mask, respectively. Two linear codes C
and D with respective generator matrices GC and GD encode U and M into V .

It follows that from the perspective of side-channel resistance, the word-level security is only
captured by the minimum distance of D⊥ [5, 18]. By contrast, the bit-level security of a code-
based masking is related to both the minimum distance and the kissing number of D⊥ [6, 7]
under the Hamming weight leakage model.

Rather than searching from all possible candidates as in [6], we aim at constructing optimal
linear codes for GCM by an efficient algorithm. To the best of our knowledge, this is an open
problem. It is known that a good code (for masking countermeasure) has a large minimum
distance and a low kissing number [7]. However, we recall from Definition 4 that such kissing
number is only one coefficient of the weight distribution polynomial. As we demonstrate in the
sequel, the entire weight distribution is to be considered to assess the side-channel resistance
of a code-based masking. As a consequence, we found that the best masking code for GCM
is determined by Algorithm 1. In particular, the difference comparing with [6, 7] lies in line 4,
which indicates the better code in case of a tie in Ai for d ≤ i ≤ n.

Input : Masking order t (at word level over F2ℓ)
Output : Codes for GCM over F2ℓ

1 Construct an MDS code D: [n, n− k]2ℓ with d⊥D = t+ 1 // Use Corollary 1, d⊥
D = n − k + 1

2 Apply subfield extension on D // Use Definition 5

3 Compute the dual code [D]⊥ // Use Definition 3

4 Choose the code D such that [D]⊥ has the best weight distribution // Use Definition 7

5 return D

Algorithm 1: Finding the best masking code for GCM.

3 Orthogonal Bases and Subfield Representations

In a code-based masking scheme, the side-channel security order at bit level is related to the
weight distribution of the codes in the subfield representation [6, 7]. Particularly, given a code
D in (1) defined over F2ℓ , we wish to evaluate the weight distribution of the dual extended code
[D]⊥, and the natural question is to assess whether this is equivalent to evaluate the weight
distribution of extended dual code [D⊥]. However, as shown in Figure 2, the commutative
relationship does not hold in general because depending on the choice of basis of F2ℓ over F2,
the two codes [D]⊥ and [D⊥] are not always equivalent to each other.

D D⊥

[D] [D]⊥
?
= [D⊥]

Subfield

Dual

Subfield

Dual

Figure 2: Commutative connection between sub-field representation and duality.

As it turns out, the commutative relationship will hold true if the basis used in subfield
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representation is a trace-orthogonal basis. Therefore, we first show how to construct trace-
orthogonal bases and then investigate the subfield extension of the code.

3.1 Construction of Trace-Orthogonal Bases
Let ℓ > 1 and F2ℓ be the extension field of F2. By the Frobenius conjugacy property, the trace
function tr : F2ℓ → F2, defined as tr(x) =

∑ℓ−1
i=0 x

2i , is linear. The (trace-)orthogonality and
orthonormality is defined as follows.

Definition 8. Elements a1, a2 in F2ℓ are orthogonal if tr(a1a2) = 0. A basis {a1, a2, . . . , aℓ}
of F2ℓ over F2 is orthonormal if tr(a2i ) = tr(ai) = 1 and tr(aiaj) = 0 for all i ̸= j.

Notice that, as mentioned in [21], we have the following result:

Lemma 2. A (trace-)orthogonal basis in F2ℓ is always orthonormal.

Proof. Let ai be elements in a basis, where i ∈ {1, . . . , ℓ}. We need to show that it satisfies
tr(ai) = 1.

The trace takes values in F2, which consists in two elements, namely 0 and 1. Therefore,
it must be proven that tr(ai) ̸= 0. This means that ai is not self-orthogonal, since tr(a2i ) =
tr(ai)

2 = tr(ai) in F2.
Let us reason by the absurd. Assume that ai is self-orthogonal. Then, not only ai is

orthogonal to all vectors aj (j ̸= i), but also to itself. Therefore, it belongs to the dual of
the space vector E generated by the basis {a1, a2, . . . , aℓ}. Notice that E is the universe code,
hence its dual is the singleton {0}. Consequently ai = 0, which contradicts the fact that ai is
a basis vector.

Remark 1. Incidentally, we notice that the condition (36) in [13, §5, p. 182] is superfluous,
since already implied by condition (37).

By [14, Note 3, page 75] (which points to the original paper [13]), we know that an or-
thonormal basis always exists. Although [13] gives a formal construction meant to provide
the existence result, the resulting implementation is double-exponential in 2ℓ, which is far too
complex to implement in practice.

In this paper, we consider instead a fast, but probabilistic, trace-orthogonal basis construc-
tion given by Algorithm 2. For ℓ = 8, it works most of the time in one iteration (e.g., about
70.20% over 2000 times of randomly running Algorithm 2). Examples are provided below.

Remark 2. Strictly speaking, Algorithm 2 does not necessarily converge with a basis of full rank.
We observed that depending on the scanning order of field elements at line 3, the algorithm can
succeed or fail to return a basis. Therefore, we introduced a randomization at this line, and
repeated the algorithm until it returns a (full rank) basis.

In viewing of Definition 8, the elements in a basis must satisfy tr(ai) ̸= 0. Therefore, we can
improve Algorithm 2 by removing zero-trace elements with a preliminary check of all traces.
The new procedure is shown in Algorithm 3.

Table 1 presents the comparison on efficiency between Algorithms 2 and 3. The performance
metric is the execution time, measured on a server which runs the Magma system. This clearly
shows the advantage of using Algorithm 3 when the order of the finite field is large. For instance,
when ℓ = 16, Algorithm 3 have a speedup by a factor of 5 compared to Algorithm 2.

We shall use the following two examples of trace-orthogonal bases throughout the rest of
this paper:
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Input : ℓ ≥ 1, the extension order of F2, and α, a primitive element of F2ℓ

Output : An orthonormal basis of F2ℓ

1 (b1, . . . , bℓ)← (0, . . . , 0) // Basis, initialized with 0s

2 for i ∈ {1, . . . , ℓ} do // Find the ith element of the orthonormal basis

3 for a ∈ (F2ℓ)
∗ do // Candidate next vector in the basis (chosen randomly)

4 if tr(a) = 1 then // Test for tr(a2) = tr(a)2 ̸= 0 (only element ̸= 0 is 1 in F2)

5 is_orthogonal← true
6 for j ∈ {1, . . . , i− 1} do
7 if tr(abj) ̸= 0 then // Test whether a and bj are orthogonal

8 is_orthogonal← false

9 if is_orthogonal then
10 bi ← a

11 return (b1, . . . , bℓ)

Algorithm 2: Randomized construction of an orthonormal basis in F2ℓ .

Input : ℓ, the extension order, and α, a primitive element of F2ℓ

Output : An orthonormal basis of F2ℓ

1 list← {}
2 for i ∈ {1, . . . , 2ℓ − 1} do // Check the trace of elements in F∗

2ℓ

3 if tr(αi) = 1 then
4 list← list ∪ {i} // Put the power in list if trace equals 1

5 B ← {αlist[1]} // Create a set with one element

6 start← 2 // Set the start position of searching (can be changed)

7 while #B ̸= ℓ do
8 n← start
9 for k ∈ {2, . . . , ℓ} do // Find the kth element of the orthonormal basis

10 for s ∈ {n+ 1, . . . ,#list} do
11 is_orthogonal← true
12 for j ∈ {1, . . . , k − 1} do // Test whether the candidate is orthogonal with elements in B

13 a← B[j] · αlist[s]

14 if tr(a) ̸= 0 then
15 is_orthogonal← false

16 if is_orthogonal then
17 B ← B ∪ a
18 n← s

19 if #B < k then // Start again if we cannot find next base

20 break;

21 start← start+ 1 // Change a start position (if we do not get enough basis)

22 return B

Algorithm 3: The improved construction of orthonormal bases in F2ℓ .

• B0 = {α252, α156, α122, α203, α5, α126, α71, α65},
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Table 1: The comparison on efficiency of two algorithms for constructing trace-orthogonal bases.
Note that with our Magma server is with Intel Xeon CPU@2.0GHz, 4 processors (only one is
used), and with 16GB Memory.

ℓ 4 8 12 16 20 24

Run time (sec)
Alg. 2 0.0001 0.0038 0.1150 1.5034 36.0350 1146.1685

Alg. 3 0.0001 0.0019 0.0334 0.3065 4.7267 267.7467

• B1 = {α121, α252, α202, α20, α242, α15, α126, α44}.

where α is the first primitive element in the finite field F28 . Note that the irreducible polynomial
used in this paper is: g(X) = X8 + X4 + X3 + X2 + 1. Moreover, we also investigate the default
basis used in Magma, which is a non-orthogonal basis:

• B2 = {1, α1, α2, α3, α4, α5, α6, α7}.

3.2 Subfield Representation and Duality of Codes
We therefore specify the representation in Definition 5 by showing how to transform an element
over F2ℓ into F2. The subfield representation [a] of a field element a is defined as follows.

Definition 9. Let b = (b1, . . . , bℓ) an orthonormal basis of F2ℓ . The subfield representation of
a ∈ F2ℓ is [a] = (tr(ab1), . . . , tr(abℓ)).

The subfield representation code [D] can be seen a concatenated code (as per Forney [11])
with D of parameters [n, k]2ℓ as the outer code, and the universal [ℓ, ℓ, 1]2 as the inner code.
As a consequence, the side-channel security at bit level and word (ℓ-bit string) level are related
by the subfield representation as follows: The security order at word level is the dual distance
of the code in F2ℓ , whereas the security order at bit level is the dual distance of the subfield
representation in F2.

A nice feature of trace-orthonormal bases is that duality and subfield representation com-
mute:

Theorem 1. Let D be a linear code. Then under a trace-orthogonal basis, we have:

[D]⊥ = [D⊥]. (2)

Said equivalently, the duality and the sub-field representation form a commutative diagram:

D D⊥

[D] [D]⊥ = [D⊥]

Dual

Subfield Subfield

Dual

Proof. Given x, y ∈ Fn
2ℓ and their subfield representations are [x], [y] ∈ Fnℓ

2 , respectively. Then
the inner product ⟨x|y⟩ = 0 implies that 0 = tr(⟨x|y⟩) =

∑
i tr(xiyi) =

∑
i

∑
j [xi]j [yi]j =

⟨[x]|[y]⟩ where the third equality holds because of the property of the trace-orthogonal basis.
Therefore, we obtain [D⊥] ⊆ [D]⊥.

Inversely, two linear codes [D⊥] and [D]⊥ are subspaces of Fnℓ
2 that have the same length

2nℓ and dimension 2(n−k)ℓ, implying the same number of codewords in both codes. As a
consequence, we have [D⊥] = [D]⊥.
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As a straightforward consequence of Theorem 1, the order of two transformations in lines 2
and 3 of Algorithm 1 are interchangeable. Therefore, the selection of the best codes can be
achieved from the code D to the dual code D⊥ and then to the subfield extension [D⊥].

Remark 3. We notice that the resulting distances are not the same depending on:

• which basis is used,

• the code itself.

We provide several examples of properties of codes D⊥ of parameters [5, 3]256 (for ℓ = 8).
The Magma scripts are given in Appendix A). The difference between the tables are the bases:

• B0 is used in Table 2,

• B1 is used in Table 3.

Table 2: The dual distances for two seeds when drawing random code D, using B0 of F256.

SetSeed(0) SetSeed(1)

dD⊥ d[D]⊥ dD⊥ d[D]⊥

4 8 4 6
3 6 4 7
4 8 4 6
4 6 4 6
4 8 4 8
4 7 4 8
4 7 4 8
4 7 4 8
4 8 4 7
4 7 4 8

4 Characterizing Side-Channel Security by Weight Distri-
bution

Mutual information (MI) is commonly used in tasks related to measuring side-channel leak-
age as an information-theoretic metric. Essentially, MI measures the statistical dependencies
between the key-dependent variables and the leakage, which considers the full distributions of
corresponding variables. Since the weight distribution determines how weights of codewords
in a linear code are distributed, it therefore determines the leakage distribution of the masked
variable from a coding-theoretic perspective [7].

In view of this, we have the following conjecture.

Conjecture 1. MI between the sensitive variable and side-channel leakage depends on the
weight distributions of the corresponding codes in the code-based masking.
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Table 3: The dual distances for two seeds when drawing random code D, using B1 of F256.

SetSeed(0) SetSeed(1)

dD⊥ d[D]⊥ dD⊥ d[D]⊥

4 8 4 7
3 6 4 7
4 7 4 7
4 7 4 8
4 8 4 7
4 7 4 7
4 7 4 8
4 6 4 7
4 7 4 7
4 7 4 8

It is well-known that for a code of dual distance d, any tuple of d−1 coordinates is uniformly
distributed, and some tuples of d coordinates are linearly dependent [15, Theorem 10]. There-
fore, the side-channel security order under probing model is t = d − 1, and an attack of order
d, corresponding to codewords of Hamming weight equal to d, brings some mutual information
that depends on σ−2d, where σ2 is the variance of the AWGN channel that characterized the
leakage model. Moreover, since not all codewords have the same Hamming weight d, other
codewords of weights > d should bring more information when considering mutual information
as an information-theoretic metric.

Said differently, the mutual information is related to
∑nℓ

i=0
Ai

σ2i , or more precisely (removing
the useless 1 constant arising from i = 0), it is related to:

nℓ∑
i=d

Ai

σ2i
,

where nℓ is the length of the extended code over F2 and Ai is the number of codewords of
weight i (in the dual of the code employed to mask the information). Hence the lexicographical
order of the Ai to compare the amount of leakage is indeed associated with the masking code.

4.1 Connecting with Attacks
When evaluating with side-channel attacks, particularly in the optimal multivariate attacks
(using higher-order optimal distinguishers) [4], the weight distribution also plays a significant
role. More precisely, we have the following conjecture.

Conjecture 2. The success rate of optimal multivariate attack is determined by the weight
distributions of the corresponding codes in the code-based masking.

Informally, as shown in Figure 1, given the same U , wH(V ) is distributed as wH(V ′), where
M and M ′ are uniformly drawn from two equivalent codes (because of the Hamming weight,
which is coordinate-wise independent). Therefore, side-channel distinguishers should perform
similarly when extracting key-dependent information from leakages under the Hamming weight
model.
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4.2 Numerical Results
In the following, we consider a typical case of GCM by setting the generator matrices of the
two codes C and D as follows:

GC =( 1 0 ) , (3)

GD =
(
α1 α2

)
=
(
αi αj

)
. (4)

Clearly, the code D is an MDS code of parameters [2, 1, 2]. Considering equivalent linear codes
over F28 , we can fix αj = 1 in GD. Hence there are only 254 candidates for the second element
in GD, corresponding to 254 linear codes.

As a common setting in side-channel analysis, we take the Hamming weight leakage model
with the Gaussian noise. The setup is shown in Figure 1 in a communication channel viewpoint.
Considering different bases, we launch an information-theoretic evaluation on all linear codes
under different noise levels. The results are shown in Figure 3, 4 and 5 for the three bases,
respectively. In particular, we add Figure 3(a) for the purpose of comparison, which illustrates
the effectiveness of our lexicographical order based sorting of all codes.

Note that the two vertical red dashed lines are for indicating the different dual distances
d⊥D ∈ {2, 3, 4}. For instance in Figure 3(b), the first vertical line marked 48 means there are
48 linear codes with d⊥D = 4, and 202 − 48 = 154 linear codes with d⊥D = 3, and remaining 52
linear codes with d⊥D = 2.
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(a) Linear codes without sorting.
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(b) Sorted linear codes in the lexicographical order.

Figure 3: Information-theoretic evaluation of all 254 candidates under the trace-orthogonal
basis B0.
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Figure 4: Information-theoretic evaluation of all 254 candidates under the trace-orthogonal
basis B1 sorted in the lexicographical order.
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Figure 5: Information-theoretic evaluation of all 254 candidates under the default basis B2

sorted in the lexicographical order.

An interesting observation from Figure 3, 4 and 5 is, the bases have a significant impact on
the distribution of linear codes. The mutual information increases (in most cases, except for
some local minima) with the code lexicographic order on their weight enumeration polynomial.
This justifies Conjecture 1. However, the number of exceptions (local minima) decreases when
the noise increases, and the curves become indeed strictly increasing. Particularly, the first
basis B0 gives the best weight distribution among the three bases, which will be investigated
further in the next subsection.

4.3 Classifying Linear Codes
In order to find the best weight distributions under different bases, we classify linear codes as in
Table 4. Specifically, in Table 4, we first show the distribution of the minimum distance of all
254 linear codes under the three bases, and then present the best weight distribution in the last
column. The takeaway point for the three bases is that the basis has a significant impact on
the distribution of the minimum distances. Under condition of the prefix-based lexicographical
order of weight distribution (Definition 6), we focus on the number of codes with the minimum
distance equal to 4, resulting that B2 gives more codes with d = 4 (among the three cases). On
the contrary, the first basis B0 gives the best weight distribution among all three bases where
A4 = 2.

Secondly, we randomly generate 1,000,000 linear codes over F2 by fixing n = 16 and k = 8 for
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Table 4: Classifying linear codes under different bases. Note that the float number in parenthesis
is the ratio between the number of codes in a class and the total number of candidates.

Subfield
Number of linear codes with different d

Best weight distribution
#{d = 1} #{d = 2} #{d = 3} #{d = 4} #{d = 5}

B0 F28 → F2 0 52 (0.2047) 154 (0.6063) 48 (0.1890) 0
[ 1, 0, 0, 0, 2, 22, 40, 44, 45,

40, 32, 20, 8, 2, 0, 0, 0 ]

B1 F28 → F2 0 52 (0.2047) 174 (0.6850) 28 (0.1102) 0
[ 1, 0, 0, 0, 3, 21, 38, 46, 45,

40, 34, 18, 7, 3, 0, 0, 0 ]

B2 F28 → F2 0 36 (0.1417) 152 (0.5984) 66 (0.2598) 0
[ 1, 0, 0, 0, 4, 22, 35, 42, 47,

46, 36, 14, 4, 4, 1, 0, 0 ]
Random
codes

F2
60688

(0.0607)
357539
(0.3575)

528070
(0.5281)

53703
(0.0537)

0
[ 1, 0, 0, 0, 1, 23, 42, 42, 45,

40, 30, 22, 9, 1, 0, 0, 0 ]

BKLC F2 0 0 0 0 1
[ 1, 0, 0, 0, 0, 24, 44, 40, 45,

40, 28, 24, 10, 0, 0, 0, 0 ]

comparison. The distribution of the minimum distances are listed in the fourth row of Table 4.
One interesting observation is that this random approach gives a better weight distribution
than all three bases over F28 .

However, all above cases do not recover the best known linear code (BKLC) given n = 16
and k = 8. We know that there is a unique linear code with parameters [16, 8, 5], which has
the minimum distance equal to 5 [7]. Among all linear codes over F2, this BKLC code gives us
the best weight distribution according to our lexicographical sorting, since it has A4 = 0 while
A4 > 0 for other cases. From a perspective of side-channel analysis, this BKLC code provides
us a masking code with the bit-level security order t = d⊥D − 1 = 4, that is higher than all other
linear codes. Unfortunately, this code cannot be constructed by the subfield extension approach
from F28 to F2 (e.g., by using bases like Bi for i ∈ {0, 1, 2}). This is also the reason why the
direct sum masking can be better than the inner product masking in the sense of side-channel
resistance [5, 7].

Evaluation of the best weight distributions under different bases. In Table 4, we
present five best cases of the weight distribution. In order to have a fair comparison, we launch
an information-theoretic evaluation by using mutual information. The results are depicted in
Figure 6.

As shown in Figure 6, the main observation is that our lexicographical order-based sorting
still works when comparing linear codes extended by using different bases. Note that for the
best weight distribution under B1 and B2, the curve for B1 is slightly higher than that of B2.
The reason is that other elements (e.g., Ad+1, Ad+2, etc) in the weight distribution under B1

have more impact on mutual information.

5 Discussion: Related Works

The problem of selecting optimal linear codes originates from [16] when choosing good codes
for leakage squeezing (LS) scheme. It is latter considered in other schemes like low-entropy
masking scheme (LEMS) [17] and direct sum masking (DSM) [3]. The problem also emerges in
choosing good public parameters in IPM [1], since different parameters play a significant role
in the side-channel resistance of IPM. Note that LS, IPM and DSM schemes are special cases
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Figure 6: Information-theoretic evaluation of the best weight distributions (WD) under different
bases as shown in Table 4.

of GCM as shown in [6]. Therefore, it is preferable to seek a solution to the problem in GCM
as it is the most general case.

From the perspective of solution, using the dual distance as an indicator to choose good codes
(in the sense of side-channel resistance) is proposed firstly in [3,5,17,18]. In particular, DSM and
IPM are connected to each other over F2ℓ and F2 in [5,18]. Then the kissing number proposed
as the second indicator along with the dual distance is investigated in [6, 7]. In viewing of the
state-of-the-art results, this paper further extends the idea by using the full weight distribution
and illustrate the exact conversion from F2ℓ to F2 by giving the best weight distribution. In
particular, we show how to use trace-orthogonal bases to obtain the extend codes over F2

irrespective to the order of two transformations, namely applying subfield representation first
or computing dual codes first.

More generally, when the code-based masking is redundant [6], our approach also works
in selecting optimal weight distribution. Considering the polynomial masking [19], which is
based on Shamir’s Secret Sharing (SSS) scheme, the kissing number should be replaced by the
adjusted one (defined in [6], depending on both codes C and D in GCM). As a consequence,
the selection of optimal linear codes should also use the adjusted weight distribution of C and
D, rather than the weight distribution of D only in non-redundant cases like in IPM, etc.

6 Conclusions and Perspectives

In this work, we built a link between weight distribution of a linear code and the side-channel
resistance of the corresponding code-based masking scheme. We first revisited the subfield
extension of a linear code from word to bit level, which is related to word- and bit-level probing
security. Using trace-orthonormal bases allowed us to have a commutative relationship of
subfield representation and duality of a code. We then connected the side-channel resistance of
the code-based masking to the weight distribution of corresponding linear codes. We have shown
that the lexicographical ordering of the weight distribution can be used to find the best codes.
More precisely, the lexicographic order on weight enumerators coincides with the information
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the corresponding codes leak as additive white Gaussian noise increases. Thus, the information-
theoretic evaluation confirms the interest of the lexicographic sorting on weight distributions,
which can be readily used to construct optimally resistant linear codes to side-channel attacks
in our framework.
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basis when building a connection between subfield representation and duality of the linear code,
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A Magma Scripts
The Magma scripts used in Table 2 and 3 are as follows.

1 l := 8 ; // In t h i s example , we con s id e r the f i n i t e f i e l d GF(2 , 8)
2 n := 5 ;
3 k := 3 ;
4 Nc := 10 ; // Obtain 10 random l i n e a r codes
5

6 SetSeed (0 ) ;
7 [ { MinimumDistance (D) , MinimumDistance ( SubFie ldRepresentat ionCode (D) ) } :
8 D in [ Dual (RandomLinearCode (GF(2 , l ) ,n , k ) ) : i in { 1 . . Nc } ] ] ;
9

10 SetSeed (1 ) ;
11 [ { MinimumDistance (D) , MinimumDistance ( SubFie ldRepresentat ionCode (D) ) } :
12 D in [ Dual (RandomLinearCode (GF(2 , l ) ,n , k ) ) : i in { 1 . . Nc } ] ] ;

Listing 1: Obtaining random linear codes, in Magma [23] language.
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